Skip to main content
Log in

Effect of short-term endurance training on exercise capacity, haemodynamics and atrial natriuretic peptide secretion in heart transplant recipients

  • Original article
  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Abstract

Exercise tolerance of heart transplant patients is often limited. Central and peripheral factors have been proposed to explain such exercise limitation but, to date, the leading factors remain to be determined. We examined how a short-term endurance exercise training programme may improve exercise capacity after heart transplantation, and whether atrial natriuretic peptide (ANP) release may contribute to the beneficial effects of exercise training by minimizing ischaemia and/or cardiac and circulatory congestion through its vasodilatation and haemoconcentration properties. Seven heart transplant recipients performed a square-wave endurance exercise test before and after 6 weeks of supervised training, while monitoring haemodynamic parameters, ANP and catecholamine concentrations. After training, the maximal tolerated power and the total mechanical work load increased from 130.4 (SEM 6.5) to 150.0 (SEM 6.0) W (P < 0.05) and from 2.05 (SEM 0.1) to 3.58 (SEM 0.14) kJ · kg−1 (P < 0.001). Resting heart rate decreased from 100.0 (SEM 3.4) to 92.4 (SEM 3.5) beats · min−1 (P < 0.05) but resting and exercise induced increases in cardiac output, stroke volume, right atrial, pulmonary capillary wedge, systemic and pulmonary artery pressures were not significantly changed by training. Exercise-induced decrease of systemic vascular resistance was similar before and after training. After training arterio-venous differences in oxygen content were similar but maximal lactate concentrations decreased from 6.20 (SEM 0.55) to 4.88 (SEM 0.6) mmol · 1−1 (P < 0.05) during exercise. Similarly, maximal exercise noradrenaline concentration tended to decrease from 2060 (SEM 327) to 1168 (SEM 227) pg · ml−1. A significant correlation was observed between lactate and catecholamines concentrations. The ANP concentration at rest and the exercise-induced ANP concentration did not change throughout the experiment [104.8 (SEM 13.1) pg · ml−1 vs 116.0 (SEM 13.5) pg · ml−1 and 200.0 (SEM 23.0) pg · ml−1 vs 206.5 (SEM 25.9) pg · ml−1 respectively]. The results of this study suggested that the significant improvement in exercise capacity observed after this short-term endurance training period may have arisen mainly through peripheral mechanisms, associated with the possible decrease in plasma catecholamine concentrations and reversal of muscle deconditioning and/or prednisone-induced myopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banner NR (1993) Exercise physiology and rehabilitation after heart transplantation. J Heart Lung Transplant 11:S237-S240

    Google Scholar 

  • Berglund H, Jensen-Urstad M, Theodorsson E, Bevegard S (1991) Plasma level of atrial natriuretic peptide at rest and during exercise in heart-failure; influence of cardiac rythm and haemodynamics. Clin Physiol 11:183–196

    PubMed  CAS  Google Scholar 

  • Braith RW, Wood CE, Limacher MC, Pollock ML, Lowenthal DT, Phillips MI, Staples ED (1992) Abnormal neuroendocrine responses during exercise in heart transplant recipients. Circulation 86:1453–1463

    PubMed  CAS  Google Scholar 

  • Braith RW, Limacher MC, Legett SH, Pollock ML (1993) Skeletal muscle strength in heart transplant recipients. J Heart Lung Transplant 12:1018–1023

    PubMed  CAS  Google Scholar 

  • Booth FW, Thomason DB (1991) Molecular and cellular adaptation of muscle in response to exercise perspectives of various models. Physiol Rev 71:541–585

    PubMed  CAS  Google Scholar 

  • Brooks GA (1991) Current concepts in lactate exchange. Med Sci Sports Exerc 23:895–906

    PubMed  CAS  Google Scholar 

  • Casaburi R, Storer TW, Wasserman K (1987) Mediation of reduced ventilatory response to exercise after endurance training. J Appl Physiol 63:1533–1538

    PubMed  CAS  Google Scholar 

  • Cody RJ, Kubo SH, Laragh JH, Atlas SA (1992) Cardiac secretion of atrial natriuretic factor with exercise in chronic congestive heart failure patients. J Appl Physiol 73:1637–1643

    PubMed  CAS  Google Scholar 

  • Convertino VA, Brock PJ, Keil LC, Bernauer EM, Greenleaf JE (1980) Exercise training-induced hypervolemia: role of plasma albumin, renin, and vasopressin. J. Appl Physiol 48:665–669

    PubMed  CAS  Google Scholar 

  • Drexler H (1991) Reduced exercise tolerance in chronic heart failure and its relationship to neurohumoral factors. Eur Heart J 12, [Suppl]: C21-C28

    Google Scholar 

  • Geny B, Piquard F, Follenius M, Mettauer B, Schaefer A, Canguihem B, Eisemann B, Haberey P (1993) Role of cardiac innervation on atrial natriuretic peptide secretion in transplanted heart recipients. Am J Physiol. 265:F112-F118

    PubMed  CAS  Google Scholar 

  • Gimenez M, Servera E, Salinas W (1982) Square wave endurance exercise test (SWEET) for training and assessment in trained and untrained subjects. Eur J Appl Physiol 49:359–387

    Article  CAS  Google Scholar 

  • Guyton AC, Jones CE, Coleman TG (1973) Cardiac output in muscular exercise.In: Guyton AC, Jones CE, Coleman TG (eds) Circulatory physiology: cardiac output and its regulation. Saunders, Philadelphia, pp 436–450

    Google Scholar 

  • Horber FF, Scheidegger JR, Grunig BE, Frey FJ (1985) Evidence that prednisone-induced myopathy is reversed by physical training. J Clin Endocrinol Metab 61:83–88

    Article  PubMed  CAS  Google Scholar 

  • Iskandrian A (1988) Exercise training after anterior Q wave myocardial infarction: harmful or beneficial. J Am Coll Cardiol 12:373–374

    PubMed  CAS  Google Scholar 

  • Kao AC, Van Trigt P, Shaeffer-McCall GS, Shaw JP, Kuzil BB, Page RD, Higginbotham MB (1994) Central and peripheral limitations to upright exercise in untrained cardiac transplant recipients. Circulation 89:2605–2615

    PubMed  CAS  Google Scholar 

  • Kavanagh T, Yacoub MH, Mertens DJ, Kennedy J, Campbell RD, Sawyer P (1988) Cardiorespiratory response to exercise training after orthotopic cardiac transplantation. Circulation 77:162–171

    PubMed  CAS  Google Scholar 

  • Keogh A, Nicholls G, Spratt P, Esmore D, Chang V (1989) Enhanced atrial natriuretic factor release during exercise in cardiac transplant recipients. Transplant Proc 21:2576–2578

    PubMed  CAS  Google Scholar 

  • Keteyian S, Shepard R, Ehrman J, Fedel F, Glick C, Rhoads K, Levine TB (1991) Cardiovascular response of heart transplant patients to exercise training. J Appl Physiol 70:2627–2631

    PubMed  CAS  Google Scholar 

  • Lai CP, Egashira K, Tashiro H, Narabayashi H, Koyanagi S, Imaizumi T, Takeshita A (1993) Beneficial effect of atrial natriuretic peptide on exercise-induced myocardial ischemia in patients with stable effort angina pectoris. Circulation 87:144–151

    PubMed  CAS  Google Scholar 

  • Lampert E, Mettauer B, Hoppeler H, Epailly E, Schnedecker B, Geny B, Levy F, Lonsdorfer J (1994) Muscular metabolic and ultrastructural changes induced by short term endurance training in heart transplant patients (abstract). Eur Heart J 15:320

    Google Scholar 

  • Lonsdorfer J, Lampert E, Mettauer B, Hoppeler H, Frey M, Schnedecker B, Dah C, Epailly E (1992) Physical fitness after cardiac transplantation: a proposal for an endurance training program and its assessment. Sci Sports 7:39–44

    Article  Google Scholar 

  • Lonsdorfer J, Lampert E, Mettauer B, Hoppeler H, Schnedecker B, Colotte J, Geny B, Haberey P (1995) Exercise hyperventilation and fatigue in heart transplant. Eur Respir Rev 5:18–23

    Google Scholar 

  • Maskin CS, Forman R, Sonnenblick EH, Frishmann WH, Lejemtel TH (1983) Failure of dobutamine to increase exercise capacity despite haemodynamic improvement in severe congestive heart failure. Am J Cardiol. 51:177–182

    Article  PubMed  CAS  Google Scholar 

  • Maslowsky F, Anza C, Pedretti R, Santoro F, Bonelli R, Pribevich M, Caru B (1994) Effects of two different types of physical training (aerobic versus anaerobic) in early cardiac transplantation (abstract). Eur Heart J 15:320

    Google Scholar 

  • Massie BM, Conway M, Rajagopalan B, Yonge R, Frostick S, Ledingham J, Sleight P, Radda G (1988) Skeletal muscle metabolism during exercise under ischemic conditions in congestive heart failure. Evidence for abnormalities unrelated to blood flow. Circulation 78:320–326

    PubMed  CAS  Google Scholar 

  • Mettauer B, Lampert E, Lonsdorfer J, Levy F, Geny B, Kretz JG, Carpentier A, Haberey P, Eisenmann B, Kieny R (1991) Cardiorespiratory and neuro-hormonal response to incremental maximal exercise of patients with denervated transplanted hearts. Transplant Proc 23:1178–1181

    PubMed  CAS  Google Scholar 

  • Miller TD, Rogers PJ, Bauer BA, Burnett JC (1990) What stimulates atrial natriuretic factor release during exercise? J Lab Clin Med 116:487–491

    PubMed  CAS  Google Scholar 

  • Needleman P, Greenwald JE (1986) Atriopeptin: a cardiac hormone intimately involved in fluid, electrolyte, and blood pressure homeostasis. New Engl J Med 314:828–834

    Article  PubMed  CAS  Google Scholar 

  • Niset G, Coustry-Degre C, Degre S (1988) Psychosocial and physical rehabilitation after heart transplantation: one year follow-up. Cardiology 75:311–317

    Article  PubMed  CAS  Google Scholar 

  • Perrault H, Melin B, Jimenez C, Dureau G, Dureau P, Allevard AM, Cottet-Emard JM, Gauquelin G, Gharib C (1994) Fluid-regulating and sympathoadrenal hormonal responses to peak exercise following cardiac transplantation. J Appl Physiol 76:230–235

    PubMed  CAS  Google Scholar 

  • Pflugfelder PW, Purves PD, McKenzie FN, Koskuk WJ (1987) Cardiac dynamics during supine exercise in cyclosporine treated orthotopic heart transplant recipients. Assessment by radionucleide angiography. J Am Coll Cardiol 10:336–341

    Article  PubMed  CAS  Google Scholar 

  • Rudas L, Pflugfelder PW, McKenzie FN, Menkis AIL, Novick RJ, Koskuk WJ (1992) Normalisation of upright exercises haemodynamics and improved exercise capacity one year after orthotopic cardiac transplantation. Am J Cardiol 69:1336–1339

    Article  PubMed  CAS  Google Scholar 

  • Saini J, Geny B, Brandenberger G, Mettauer B, Wittersheim G, Lampert E, Lonsdorfer J (1995) Training effects on the hydromineral endocrine responses of cardiac transplant patients. Eur J Appl Physiol 70:226–233

    Article  CAS  Google Scholar 

  • Singer DR, Banner NR, Cox A, Patel N, Burdon M, Buckley MG, MacGregor GA, Yacoub MH (1990) Response to dynamic exercise in cardiac transplant recipients: implications for the sodium regulatory hormone atrial natriuretic peptide. Clin Sci 78:159–163

    PubMed  CAS  Google Scholar 

  • Sinoway LI, Minotti JR, Davis D, Pennock JL, Burg JE, Musch TI, Zelis R (1988) Delayed reversal of impaired vasodilation in congestive heart failure after heart transplantation. Am J Cardiol. 61:1076–1079

    Article  PubMed  CAS  Google Scholar 

  • Squires RW (1991) Exercise training after cardiac transplantation. Med Sci Sports Exerc 23:686–694

    PubMed  CAS  Google Scholar 

  • Stratton JR, Kemp GJ, Daly RC, Yacoub M, Rajagopalan B (1994) Effect of cardiac transplantation on bioenergetic abnormalities of skeletal muscle in congestive heart failure. Circulation 89:1624–1631

    PubMed  CAS  Google Scholar 

  • Sudhir K, Meredith IT, Jennings GL, Friberg P, Woods RL, Esler MD (1990) Effect of endurance exercise on cardiac secretion and renal clearance of atrial natriuretic peptide in normal humans. Clin Exp Hypertens 12:1223–1235

    CAS  Google Scholar 

  • Vollmer-Larsen B, Vollmer-Larsen A, Larsen OG, Breum L, Larsen J, Keller N (1989) Atrial natriuretic factor during exercise in male endurance athletes: effect of training. Clin Physiol 9:449–456

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geny, B., Saini, J., Mettauer, B. et al. Effect of short-term endurance training on exercise capacity, haemodynamics and atrial natriuretic peptide secretion in heart transplant recipients. Europ. J. Appl. Physiol. 73, 259–266 (1996). https://doi.org/10.1007/BF02425485

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02425485

Keywords

Navigation