Skip to main content
Log in

The genetic basis of developmental stability. I. Relationships between stability, heterozygosity and genomic coadaptation

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The genetic basis of developmental stability has been much debated over the last four decades. Two major hypotheses have been developed over this period, one that argues that the level of stability is a reflection of the underlying level of genomic heterozygosity and the other that stability reflects the general level of genomic coadaptation, or genic balance. In this paper I have attempted to critically review the evidence for these hypotheses from both practical and theoretical perspectives. On balance there is little convincing evidence to suggest that heterozygosity plays a significant role in the determination and maintenance of developmental stability, whereas there is considerable support for the genomic coadaptation hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angus, R. A. & R. J. Schultz, 1983. Meristic variation in homozygous and heterozygous fish. Copeia 1983: 287–299.

    Article  Google Scholar 

  • Bader, R. S. 1965. Fluctuating asymmetry in the dentition of the house mouse. Growth 29: 291–300.

    CAS  PubMed  Google Scholar 

  • Beacham, T. D. & R. Withler, 1985. Heterozygosity and morphological variability of chum salmon(Oncorhynchus keta) in southern British Columbia. Heredity 54: 313–322.

    PubMed  Google Scholar 

  • Beardmore, J. A., 1960. Developmental stability in constant and fluctuating temperatures. Heredity 14: 411–422.

    Google Scholar 

  • Biémont, C., 1983. Homeostasis, enzymatic heterozygosity and inbreeding depression in natural populations ofDrosophila melanogaster. Genetica 61: 179–189.

    Article  Google Scholar 

  • Brückner, D., 1976. The influence of genetic variability on wing symmetry in honeybees(Apis mellifera). Evolution 30: 100–108.

    Article  Google Scholar 

  • Clarke, G. M. & J. A. McKenzie, 1987. Developmental stability of insecticide resistant phenotypes in blowfly; a result of canalizing natural selection. Nature 325: 345–346.

    Article  CAS  Google Scholar 

  • Clarke, G. M. & J. A. McKenzie, 1992. Coadaptation, developmental stability and fitness of insecticide resistance genotypes in the Australian sheep blowfly,Lucilia cuprina: A review. Acta Zoologica Fennica 191: 107–110.

    Google Scholar 

  • Clarke, G. M., G. W. Brand & M. J. Whitten, 1986. Fluctuating asymmetry: a technique for measuring developmental stress caused by inbreeding. Australian Journal of Biological Sciences 39: 145–153.

    Google Scholar 

  • Clarke, G. M., B. P. Oldroyd & P. Hunt, 1992. The genetic basis of developmental stability inApis mellifera: Heterozygosity versus genic balance. Evolution 46: 753–762.

    Article  Google Scholar 

  • Darlington, C. D., 1939. The Evolution of Genetic Systems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Dobzhansky, T., 1950. Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations ofDrosophila pseudoobscura. Genetics 35: 288–302.

    CAS  PubMed  Google Scholar 

  • Dobzhansky, T., 1951. Genetics and the Origin of Species 3rd ed. Columbia University Press, New York.

    Google Scholar 

  • Dobzhansky, T., 1970. Genetics of the Evolutionary Process. Columbia University Press, New York.

    Google Scholar 

  • Eanes, W. F., 1978. Morphological variance and enzyme heterozygosity in the monarch butterfly. Nature 276: 263–264.

    Article  Google Scholar 

  • Felley, J., 1980. Analysis of morphology and asymmetry in bluegill sunfish(Lepomis macrochirus) in the southeastern United States. Copeia 1980: 18–29.

    Article  Google Scholar 

  • Ferguson, M. M., 1986. Developmental stability of rainbow trout hybrids: genomic coadaptation or heterozygosity? Evolution 40: 323–330.

    Article  Google Scholar 

  • Fleischer, R. C., R. F. Johnston & W. J. Klitz, 1983. Allozymic heterozygosity and morphological variation in house sparrows. Nature 304: 628–629.

    Article  CAS  PubMed  Google Scholar 

  • Graham, J. H. & J. D. Felley, 1985. Genomic coadaptation and developmental stability within introgressed populations ofEnneacanthus gloriosus andE. obesus (Pisces, Centrarchidae). Evolution 39: 104–114.

    Article  Google Scholar 

  • Graham, J. H., 1992. Genomic coadaptation and developmental stability in hybrid zones. Acta Zoologica Fennica 191: 121–132.

    Google Scholar 

  • Handford, P., 1980. Heterozygosity at enzyme loci and morphological variation. Nature 286: 261–262.

    Article  CAS  PubMed  Google Scholar 

  • Hewitt, G. M., 1988. Hybrid zones — natural laboratories for evolutionary studies. Trends in Ecology and Evolution 3: 158–167.

    Article  Google Scholar 

  • Jackson, J. F., 1973. A search for the population asymmetry parameter. Systematic Zoology 22: 166–170.

    Article  Google Scholar 

  • Jinks, J. L. & K. Mather, 1955. Stability in development of heterozygotes and homozygotes. Proceeding of the Royal Society of London Series B 143: 561–578.

    CAS  Google Scholar 

  • Johnson, G. B., 1976. Genetic polymorphism and enzyme function. In F. J. Ayala (ed.) Molecular Evolution pp. 46–59. Sinauer, Sunderland, MA.

    Google Scholar 

  • Jokela, P. & P. Portin, 1991. Effect of extra Y chromosome on number and fluctuating asymmetry of sternopleural bristles inDrosophila melanogaster. Hereditas 114: 177–187.

    CAS  PubMed  Google Scholar 

  • Kat, P. W., 1982. The relationship between heterozygosity for enzyme loci and developmental homeostasis in peripheral populations of aquatic bivalves (Unionidae). American Naturalist 119: 824–832.

    Article  Google Scholar 

  • Kieser, J. A. & H. T. Groeneveld, 1991. Fluctuating odontometric asymmetry, morphological variability, and genetic monomorphism in the cheetahAcinonyx jubatus. Evolution 45: 1175–1183.

    Article  Google Scholar 

  • Kimura, M., 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lamb, T., M. Novak & D. L. Mahoney, 1990. Morphological asymmetry and interspecific hybridisation: a case study using hylid frogs. Journal of Evolutionary Biology 3: 295–309.

    Article  Google Scholar 

  • Leamy, L., 1984. Morphometric studies in inbred and hybrid house mice. V. Directional and fluctuating asymmetry. American Naturalist 123: 579–593.

    Article  Google Scholar 

  • Leamy, L., 1992. Morphometric studies in inbred and hybred house mice. VII. Heterosis in fluctuating asymmetry at different ages. Acta Zoologica Fennica 191: 111–120.

    Google Scholar 

  • Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1983. Developmental stability and enzyme heterozygosity in rainbow trout. Nature 301: 71–72.

    Article  CAS  PubMed  Google Scholar 

  • Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1984. Superior developmental stability of heterozygotes at enzyme loci in salmonid fishes. American Naturalist 124: 540–551.

    Article  Google Scholar 

  • Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1985a. Inheritance of meristic variation and the evolution of developmental stability in rainbow trout. Evolution 39: 308–314.

    Article  Google Scholar 

  • Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1985b. Developmental instability and high meristic counts in interspecific hybrids of salmonid fishes. Evolution 39: 1318–1326.

    Article  Google Scholar 

  • Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1992. Genetic, environmental and developmental causes of meristic variation in rainbow trout. Acta Zoologica Fennica 191: 79–96.

    Google Scholar 

  • Leary, R. F., F. W. Allendorf, K. L. Knudsen & G. H. Thorgaard, 1985. Heterozygosity and developmental stability in gynogenetic diploid and triploid rainbouw trout. Heredity 54: 219–225.

    PubMed  Google Scholar 

  • Lerner, I. M., 1954. Genetic Homeostasis. Wiley, New York.

    Google Scholar 

  • Levin, D. A., 1970. Developmental instability and evolution in peripheral populations. American Naturalist 104: 343–353.

    Article  Google Scholar 

  • Lewontin, R. C., 1974. The Genetic Basis of Evolutionary Change. Columbia University Press, New York.

    Google Scholar 

  • MacAndrew, B. J., R. D. Ward & J. A. Beardmore, 1982. Lack of a relationship between morphological variance and enzyme heterozygosity in the plaice,Pleuronectes platessa. Heredity 48: 117–125.

    Google Scholar 

  • Markow, T. A. & J. P. Ricker, 1991. Developmental stability in hybrids between the sibling species pair,Drosophila melanogaster andDrosophila simulans. Genetica 84: 115–121.

    Article  CAS  PubMed  Google Scholar 

  • Mather, K., 1953. Genetical control of stability in development. Heredity 7: 297–336.

    Google Scholar 

  • Mather, K., 1973. Genetical Structure of Populations. Chapman and Hall, London.

    Google Scholar 

  • McKenzie, J. A. & G. M. Clarke, 1988. Diazinon resistance, fluctuating asymmetry and fitness in the Australian sheep blowfly,Lucilia cuprina. Genetics 120: 213–220.

    CAS  PubMed  Google Scholar 

  • McKenzie, J. A., P. Batterham & L. Baker, 1990. Fitness and asymmetry modification as an evolutionary process. A study in the Australian sheep blowfly,Lucilia cuprina andDrosophila melanogaster. In J. S. F. Barker, W. T. Starmer and R. J. MacIntyre (eds.) Ecological and Evolutionary Genetics of Drosophila pp. 57–73. Plenum, New York.

    Google Scholar 

  • Mitton, J. B., 1978. Relationship between heterozygosity for enzyme loci and variation of morphological characters in natural populations. Nature 273: 661–662.

    Article  CAS  PubMed  Google Scholar 

  • Mitton, J. B. & M. C. Grant, 1984. Association among protein heterozygosity, growth rate, and developmental homeostasis. Annual Review of Ecology and Systematics 15: 479–499.

    Article  Google Scholar 

  • Modi, W. S., R. K. Wayne & S. J. O'Brien, 1987. Analysis of fluctuating asymmetry in cheetahs. Evolution 41: 227–228.

    Article  Google Scholar 

  • Palmer, A. R., 1986. Inferring relative levels of genetic variability in fossils: the link between heterozygosity and fluctuating asymmetry. Palaeobiology 12: 1–5.

    Google Scholar 

  • Palmer, A. R. & C. Strobeck, 1986. Fluctuating asymmetry: measurement, analysis, patterns. Annual Review of Ecology and Systematics 17: 392–421.

    Article  Google Scholar 

  • Parsons, P. A., 1990. Fluctuating asymmetry: an epigenetic measure of stress. Biological Reviews 65: 131–145.

    CAS  PubMed  Google Scholar 

  • Patterson, B. D. & J. L. Patton, 1990. Fluctuating asymmetry and allozymic heterozygosity among natural populations of pocket gophers(Thomomys bottae). Biological Journal of the Linnean Society 40: 21–36.

    Google Scholar 

  • Rasmusson, M., 1960. Frequency of morphological deviations as a criterion of developmental stability. Hereditas 46: 511–536.

    Article  Google Scholar 

  • Robertson, F. W. & E. C. R. Reeve, 1952. Heterozygosity, environmental variation and heterosis. Nature 170: 286.

    CAS  PubMed  Google Scholar 

  • Ross, K. G. & J. L. Robertson, 1990. Developmental stability, heterozygosity, and fitness in two introduced fire ants(Solenopsis invicta andS. richteri) and theiry hybrid. Heredity 64: 93–103.

    Google Scholar 

  • Sakai, K-I. & Y. Shimamoto, 1965. Developmental instability in leaves and flowers ofNicotiana tabacum. Genetics 51: 801–813.

    PubMed  CAS  Google Scholar 

  • Sarre, S. & J. M. Dearn, 1991. Morphological variation and fluctuating asymmetry among insular populations of the sleepy lizard,Trachydosaurus rugosus Gray (Squamata: Scincidae). Australian Journal of Zoology 39: 91–104.

    Article  Google Scholar 

  • Schmalhausen, I. I., 1949. Factors of Evolution. Blakiston, Philadelphia.

    Google Scholar 

  • Selander, R. K., 1976. Genic variation in natural populations. In F. J. Ayala (ed.) Molecular Evolution pp. 21–45. Sinauer, Sunderland, MA.

    Google Scholar 

  • Shackell, N. L. & R. W. Doyle, 1991. Scale morphology as an index of developmental stability and stress resistance of tilapia(Oreochromis niloticus). Canadian Journal of Fisheries and Aquatic Science 48: 1662–1669.

    Article  Google Scholar 

  • Soulé, M. E., 1967. Phenetics of natural populations. III. Asymmetry and evolution in a lizard. American Naturalist 101: 141–159.

    Article  Google Scholar 

  • Soulé, M. E., 1979. Heterozygosity and developmental stability: another look. Evolution 33: 396–401.

    Article  Google Scholar 

  • Strauss, S. H., 1987. Heterozygosity and developmental stability under inbreeding and crossbreeding inPinus attenuata. Evolution 41: 331–339.

    Article  Google Scholar 

  • Tebb, G. & J. M. Thoday, 1954. Stability in development and relational balance of X-chromosomes inDrosophila melanogaster. Nature 174: 1109–1110.

    CAS  PubMed  Google Scholar 

  • Thoday, J. M., 1955. Balance, heterozygosity and developmental stability. Cold Spring Harbor Symposium on Quantitative Biology 20: 318–326.

    CAS  Google Scholar 

  • Thoday, J. M., 1958. Homeostasis in a selection experiment. Heredity 12: 401–415.

    Google Scholar 

  • Van Valen, L., 1962. A study of fluctuating asymmetry. Evolution 16: 125–142.

    Article  Google Scholar 

  • Vrijenhoek, R. C. & S. Lerman, 1982. Heterozygosity and developmental stability under sexual and asexual breeding systems. Evolution 36: 768–776.

    Article  Google Scholar 

  • Waddington, C. H., 1942. Canalization of development and the inheritance of acquired characters. Nature 150: 563–565.

    Google Scholar 

  • Wayne, R. K., W. S. Modi & S. J. O'Brien, 1986. Morphological variability and asymmetry in the cheetah(Acinonyx jubatus), a genetically uniform species. Evolution 40: 78–85.

    Article  Google Scholar 

  • Willig, M. R. & R. D. Owen, 1987. Fluctuating asymmetry in the cheetah: methodological and interpretive concerns. Evolution 41: 225–227.

    Article  Google Scholar 

  • Wooten, M. C. & M. H. Smith, 1986. Fluctuating asymmetry and genetic variability in a natural population ofMus musculus. Journal of Mammology 67: 725–732.

    Google Scholar 

  • Zakharov, V. M., 1981. Fluctuating asymmetry as an index of developmental homeostasis. Genetika 13: 241–256.

    Google Scholar 

  • Zakharov, V. M., 1987. Animal asymmetry: a population-phenogenetic approach. (In Russian). Nauka, Moscow.

    Google Scholar 

  • Zakharov, V. M., 1989. Future prospects for population phenogenetics. Soviet Scientific Reviews F Physiology and General Biology 4: 1–79.

    Google Scholar 

  • Zakharov, V. M., 1992. Population phenogenetics: Analysis of developmental stability in natural populations. Acta Zoologica Fennica 191: 7–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, G.M. The genetic basis of developmental stability. I. Relationships between stability, heterozygosity and genomic coadaptation. Genetica 89, 15–23 (1993). https://doi.org/10.1007/BF02424502

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02424502

Keywords

Navigation