Skip to main content
Log in

Aluminium causes nutrient imbalance and structural changes in the needles of Scots pine without inducing clear root injuries

  • Published:
Trees Aims and scope Submit manuscript

Abstract

The effects of aluminium chloride (AICI3) treatments (50 and 150 mg/l) on 3-year-old Scots pine (Pinus sylvestris L.) seedlings were studied in a sand culture during 2 growing periods in an open field experiment. Even by the end of the first growing period, a decline was observed in the concentrations of Ca, Mg and P within the needles, and of Ca and Mg in the roots. After the second growing period, increased N and K concentrations were observed in the needles of Al-treated seedlings. Both the needles and roots of Al-treated seedlings showed, after the second growing period, a decline in growth and increased concentrations of AI as the amount of AICI3 in the nutrient solution increased. Al-induced changes in needle structure were found to be symptomatic of a nutrient imbalance, particularly of Mg and P. Al-stress did not result in any observable changes in root anatomy or in the number of mycorrhizas. Scots pine proved to be rather resistant to Al-stress, indicating that direct Al-injuries are not likely in the field, though Al-stress may be a contributing factor in the formation of nutrient imbalances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen SE (1989) Chemical analysis of ecological materials. Blackwell's, Oxford

    Google Scholar 

  • Arovaara H, Ilvesniemi H (1990) The effects of soluble inorganic aluminium and nutrient imbalances onPinus sylvestris andPicea abies seedlings. In: Kauppi P, Kenttämies K, Anttila P (eds) Acidification in Finland. Springer, Berlin Heidelberg New York, pp 715–733

    Google Scholar 

  • Bukovac MJ, Wittwer SH (1957) Absorption and mobility of foliar applied nutrients. Plant Physiol 32: 428–435

    CAS  PubMed  Google Scholar 

  • Clarkson DT (1965) The effect of aluminium and some other trivalent metal cations on cell division in the root apices ofAllium cepa. Ann Bot 29: 309–315

    Google Scholar 

  • Cronan CS, April R, Bartlett RJ, Bloom PR, Driscoll CT, Gherini SA, Henderson GS, Joslin JD, Kelly JM, Newton RM, Parnell RA, Patterson HH, Raynal DJ, Schaedle M, Schofield CL, Sucoff EI, Tepper HB, Thornton FC (1989) Aluminium toxicity in forests exposed to acidic deposition: the ALBIOS results. Water Air Soil Pollut 48: 181–192

    Article  CAS  Google Scholar 

  • Cumming JR, Weinstein LH (1990a) Aluminium-mycorrhizal interactions in the physiology of pitch pine seedlings. Plant Soil 125: 7–18

    CAS  Google Scholar 

  • Cumming JR, Weinstein LH (1990b) Utilization of ALPO4 as a phosphorus source by ectomycorrhizalPinus rigida Mill. seedlings. New Phytol 116: 99–106

    Article  CAS  Google Scholar 

  • Cumming JR, Weinstein LH (1990c) Nitrogen source effects on Al toxicity in nonmycorrhizal and mycorrhizal pitch pine (Pinus rigida) seedlings. 1. Growth and nutrition. Can J Bot 68: 2644–2652

    Article  CAS  Google Scholar 

  • Daughtridge AT, Boese SR, Pallardy SG, Garrett HE (1986) A rapid staining technique for assessment of ectomycorrhizal infection of oak roots. Can J Bot 64: 1101–1103

    Article  Google Scholar 

  • Entry JA, Cromack K Jr, Stafford S, Castellano MA (1987) The effect of pH and aluminum concentration on ectomycorrhizal formation inAbies balsamea. Can J For Res 17: 865–871

    CAS  Google Scholar 

  • Fink S (1988) Histological and cytological changes caused by air pollutants and other abiotic factors. In: Schulte-Hostede S, Darrall N, Blank LW, Wellburn AR (eds) Air pollution and plant metabolism. Elsevier, London, pp 36–54

    Google Scholar 

  • Fink S (1989) Pathological anatomy of conifer needles subjected to gasenous air pollutants or mineral deficiencies. Aquilo Ser Bot 27: 1–6

    Google Scholar 

  • Foy CD (1974) Effects of aluminum on plant growth. In: Carson EW (ed) The plant root and its environment. University Press of Virginia, Charlottesville, pp 601–642

    Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29: 511–566

    Article  CAS  Google Scholar 

  • Godbold DL (1991) Aluminium decreases root growth and calcium and magnesium uptake inPicea abies seedlings. In: Wright RJ, Baligar VC, Murrmann RP (eds) Plant-soil interactions at low pH. Kluwer, Dordrecht, pp 747–753

    Google Scholar 

  • Göransson A, Eldhuset TD (1991) Effects of aluminium on growth and nutrient uptake of smallPicea abies andPinus sylvestris plants. Trees 5: 136–142

    Article  Google Scholar 

  • Helmisaari H-S (1990) Temporal variation in nutrient concentrations ofPinus sylvestris needles. Scand J For Res 5: 177–193

    Article  Google Scholar 

  • Hodson MJ, Wilkins DA (1991) Localization of aluminium in the roots of Norway spruce [Picea abies (L.) Karst.] inoculated withPaxillus involutus Fr. New Phytol 118: 273–278

    Article  CAS  Google Scholar 

  • Holopainen T, Heinonen-Tanski H (1993) Effects of different nitrogen sources on the growth of Scots pine seedlings and the ultrastructure and development of their mycorrhizae. Can J For Res 23: 362–372

    CAS  Google Scholar 

  • Holopainen T, Nygren P (1989) Effects of potassium deficiency and simulated acid rain, alone and in combination, on the ultrastructure of Scots pine needles. Can J For Res 19: 1402–1411

    Google Scholar 

  • Holopainen T, Anttonen S, Wulff A, Palomäki V, Kärenlampi L (1992) Comparative evaluation of the effects of gaseous pollutants, acidic deposition and mineral deficiencies: structural changes in the cells of forest plants. Agric Ecosyst Env 42: 365–398

    Article  CAS  Google Scholar 

  • Ilvesniemi H (1991) Studies on the effects of acid deposition on soil chemical characteristics and seedling growth. PhD Thesis. University of Helsinki, Department of Silviculture

  • Ingestad T (1962) Macro element nutrition of pine, spruce, and birch seedlings in nutrient solutions. Statens Skogsforskningsinstitut 51: 7

    Google Scholar 

  • Ingestad T (1979) Mineral nutrient requirements ofPinus silvestris andPicea abies seedlings. Physiol Plant 45: 373–380

    Article  CAS  Google Scholar 

  • Jentschke G, Schlegel H, Godbold DL (1991) The effect of aluminium on uptake and distribution of magnesium and calcium in roots of mycorrhizal Norway spruce seedlings. Physiol Plant 82: 266–270

    Article  CAS  Google Scholar 

  • Jorns AC, Hecht-Buchholz C, Wissemeier AH (1991) Aluminium-induced callose formation in root tips of Norway spruce [Picea abies (L.) Karst.]. Z Pflanzenernaehr Bodenk 154: 349–353

    CAS  Google Scholar 

  • Mälkönen E, Derome J, Kukkola M (1990) Effects of nitrogen inputs on forest ecosystems estimation based on long-term fertilization experiments. In: Kauppi P, Kenttämies K, Anttila P (eds) Acidification in Finland. Springer, Berlin Heidelberg New York, pp 325–347

    Google Scholar 

  • McQuattie CJ, Schier GA (1990) Response of red spruce seedlings to aluminium toxicity in nutrient solution: alternations in root anatomy. Can J For Res 20: 1001–1011

    CAS  Google Scholar 

  • McQuattie CJ, Schier GA (1992) Effect of ozone and aluminum on pitch pine (Pinus rigida) seedlings: anatomy of mycorrhizae. Can J For Res 22: 1901–1916

    Article  CAS  Google Scholar 

  • McQuattie CJ, Schier GA (1993) Effect of ozone and aluminum on pitch pine (Pinus rigida) seedlings: needle ultrastructure. Can J For Res 23: 1375–1387

    CAS  Google Scholar 

  • Metzler B, Oberwinkler F (1987) The in-vitro-mycorrhization ofPinus sylvestris L. and its dependence on the pH-value. Eur J For Path 17: 385–397

    Google Scholar 

  • Nosko P, Brassad P, Kramer JR, Kershaw KA (1988) The effect of aluminum on seed germination and early seedling establishment, growth and respiration of white spruce (Picea glauca). Can J Bot 66: 2305–2310

    CAS  Google Scholar 

  • Olsthoorn AFM, Keltjens WG, Van Baren B, Hopman MCG (1991) Influence of ammonium on fine root development and rhizosphere pH of Douglas-fir seedlings in sand. Plant Soil 133: 75–81

    Article  CAS  Google Scholar 

  • Raitio H (1990) The foliar chemical composition of young pines (Pinus sylvestris L.) with or without decline. In: Kauppi P, Kenttämies K, Anttila P (eds) Acidification in Finland. Springer, Berlin Heidelberg New York, pp 699–713

    Google Scholar 

  • Rengel Z (1992) Role of calcium in aluminium toxicity. New Phytol 121: 499–513

    Article  CAS  Google Scholar 

  • Roy AK, Sharma A, Talukder G (1988) Some aspects of aluminum toxicity in plants. Bot Rev 54: 145–178

    Google Scholar 

  • Schaedle M, Thornton FC, Raynal DJ, Tepper HB (1989) Response of tree seedlings to aluminum. Tree Physiol 5: 337–356

    CAS  PubMed  Google Scholar 

  • Schier GA (1985) Response of red spruce and balsam fir seedlings to aluminum toxicity in nutrient solutions. Can J For Res 15: 29–33

    CAS  Google Scholar 

  • Soikkeli S (1980) Ultrastructure of the mesophyll in Scots pine and Norway spruce: seasonal variation and molarity of the fixative buffer. Protoplasma 103: 241–252

    Article  Google Scholar 

  • Sutinen S (1987) Cytology of Norway spruce needles. II. Changes in yellowing spruces from the Taunus Mountains, West Germany. Eur J For Pathol 17: 74–85

    Google Scholar 

  • Taylor GJ (1988) The physiology of aluminum phytotoxicity. In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol.24. Aluminum and its role in biology. Dekker, New York, pp 123–163

    Google Scholar 

  • Thompson GW, Medve RJ (1984) Effects of aluminum and manganese on the growth of ectomycorrhizal fungi. Appl Env Microbiol 48: 556–560

    CAS  Google Scholar 

  • Väre H (1990) Aluminium polyphosphate in the ectomycorrhizal fungusSuillus variegatus (Fr.) O. Kunze as revealed by energy dispersive spectrometry. New Phytol 116: 663–668

    Article  Google Scholar 

  • Vilkka L, Aula I, Nuorteva P (1990) Comparison of the levels of some metals in roots and needles ofPinus sylvestris in urban and rural environments at two times in the growing season. Ann Bot Fenn 27: 53–57

    CAS  Google Scholar 

  • Vogelei A, Rothe GM (1988) Die Wirkung von Säure und Aluminiumionen auf den Nährelementgehalt und den histologischen Zustand nichtmykorrhizierter Fichtenwurzeln [Picea abies (L.) Karst.]. Forstw Cbl 107: 348–357

    Google Scholar 

  • Wilkins DA, Hodson MJ (1989) The effects of aluminium andPaxillus involutus Fr. on the growth of Norway spruce [Picea abies (L.) Karst.]. New Phytol 113: 225–232

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janhunen, S., Palomäki, V. & Holopainen, T. Aluminium causes nutrient imbalance and structural changes in the needles of Scots pine without inducing clear root injuries. Trees 9, 134–142 (1995). https://doi.org/10.1007/BF02418202

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02418202

Key words

Navigation