Skip to main content
Log in

Process pathway inference via time series analysis

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Motivated by recent experimental developments in functional genomics, we construct and test a numerical technique for inferring process pathways, in which one process calls another process, from time series data. We validate using a case in which data are readily available and we formulate an extension, appropriate for genetic regulatory networks, which exploits Bayesian inference and in which the present-day undersampling is compensated for by prior understanding of genetic regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stormo, G.D. andTan, K., “Mining Genome Databases to Identify and Understand New Gene Regulatory Systems,”Current Opinion in Microbiology,5,149–153 (2002).

    Article  Google Scholar 

  2. Dayan, P. andAbbott, L.F., Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, MIT Press, Cambridge, MA (2001).

    Google Scholar 

  3. Rieke, F., Warland, D., de Ruyter van Steveninck, R., andBialek, W., Spikes: Exploring the Neural Code, MIT Press, Cambridge, MA (1996).

    Google Scholar 

  4. Walker, M.G., Volkmuth, W., Sprinzak, E., Hodsdon, D., andKliner, T., “Prediction of Gene Function by Genome-scale Expression Analysis: Prostate Cancer-associated Genes,”Genome Research,9,1198–1203 (1999).

    Article  Google Scholar 

  5. Golub, T.R. et al., “Molecular Classification of Cancer: Class Discover and Class Prediction by Gene Expression Monitoring,”Science,286,628–629 (1999).

    Article  Google Scholar 

  6. Alon, U., “Broad Pattern of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays,”PNAS USA,96,6745–6750 (1999).

    Google Scholar 

  7. Perou, C.M. et al., “Distinctive Gene Expression Patterns in Human Mammary Epithelial Cells and Breast Cancers,”PNAS USA,96,9212–9217 (1999).

    Google Scholar 

  8. Ross, D.T. et al., “Systematic Variation in Gene Expression Patterns in Human Cancer Cell Lines,”Nature Genetics,24,227–235 (2000).

    Google Scholar 

  9. Scherf, U. et al., “A Gene Expression Database for the Molecular Pharmacology of Cancer,”Nature Genetics,24,236–244 (2000).

    Google Scholar 

  10. Pinkel, D., “Cancer Cells, Chemotherapy, and Gene Clusters,”Nature Genetics,24,208–209 (2000).

    Article  Google Scholar 

  11. Cho, R. et al., “A Genome-wide Transcriptional Analysis of the Mitotic Cell Cycle,”Mol. Cell,2,65–71 (1998).

    Article  Google Scholar 

  12. Spellman, P.T. et al., “Comprehensive Identification of Cell Cycleregulated Genes of the Yeast Saccharomyces Cerecisiae by Microarray Hybridization,”Mol. Biol. Cell,9,3273–3297 (1998).

    Google Scholar 

  13. Fodor, S.P.A., Read, J.L., Pirrund, M.C., Styer, L., Lu, A.T., andSolas, D., “Light-directed, Spatially Addressable Parallel Chemical Synthesis,”Science,251,767–773 (1991).

    Google Scholar 

  14. Fodor, S.P.A., Rava, R., Huang, X.H.C., Pease, A.C., Holmes, C.P., andAdams, C.L., “Multiplexed Biochemical Assays with Biological Chips,”Nature,364,555–556 (1993).

    Article  Google Scholar 

  15. Lipshutz, R.J., Fodor, S.P.A., Gingeras, T.R., andLockhard, D.J., “High Density Synthetic Oligonucleotide Arrays,”Nature Genetics Supplement,21,20–24 (1999).

    Google Scholar 

  16. Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P.O., andDavis, R.W., “Parallel Human Genome Analysis: Microarray-based Expression Monitoring of 1000 Genes,”PNAS USA,92,10,614–10,619 (1996).

    Google Scholar 

  17. Shalon, D., Smith, S.J., andBrown, P.O., “A DNA Microarray System for Analyzing Complex DNA Samples Using Two-color Fluorescent Probe Hybridization,”Genome Research,6,639–645 (1996).

    Google Scholar 

  18. Friedman, N., Linial, M., Nachman, I., and Pe'er, D., “Using Bayesian Networks to Analyze Expression Data,” Proc. 4th Annual Int. Conf. on Computational Molecular Biology (RECOMB), 127–135 (2000).

  19. Arkin, A. andRoss, J., “Statistical Construction of Chemical Reaction Mechanisms from Measured Time-series,”J. Phys. Chem.,99,970–979 (1995).

    Article  Google Scholar 

  20. Arkin, A., Shen, P., andRoss, J., “A Test Case of Correlation Metric Construction of a Reaction Pathway from Measurements,”Science,277,1275–1279 (1997).

    Article  Google Scholar 

  21. Samoilov, M., Arkin, A., andRoss, J., “On the Deduction of Chemical Reaction Pathways from Measurements of Time Series of Concentrations,”Chaos,11,108–114 (2001).

    Article  Google Scholar 

  22. Ramoni, M., Sebastiani, P., andCohen, P., “Bayesian Clustering by Dynamics,”Machine Learning,47,91–121 (2002).

    Article  Google Scholar 

  23. Schwartz, G., “Estimating the Dimension of a Model,”Ann. Stat.,6,461–464 (1978).

    Google Scholar 

  24. Neumaier, A. andSchneider, T., “Estimation of Parameters and Eigenmodes of Multivariate Autoregressive Models,”ACM Transactions on Mathematical Software,27,27–57 (2001).

    Article  Google Scholar 

  25. Press, S.J., Bayesian Statistics: Principles, Models, and Applications, Wiley, New York (1989).

    Google Scholar 

  26. Clarke, B.S. andBarron, A.R., “Information-theoretic Asymptotics of Bayes Methods,”IEEE Trans. Inf. Theory,36,453–471 (1990).

    Article  MathSciNet  Google Scholar 

  27. Nemenman, I. and Bialek, W., “Occam Factors and Model Independent Bayesian Learning of Continuous Distributions,” Phys. Rev. E,65 (2002).

  28. Janes, E.T., “Inference, Method, and Decision: Towards a Bayesian Philosophy of Science,” J. Am. Stat. Assoc.,74 (1979).

  29. MacKay, D.J.C., “Bayesian Interpolation,”Neural Comp.,4,415–447 (1992).

    Google Scholar 

  30. Balasubramanian, V., “Statistical Inference, Occam's Razor, and Statistical Mechanics on the Space of Probability Distributions,”Neural Comp.,9,349–368 (1997).

    MATH  Google Scholar 

  31. Barash, Y. and Friedman, N., “Context-specific Bayesian Clustering for Gene Expression Data,” Proc. 5th Annual Int. Conf. on Computational Molecular Biology (RECOMB), ACM Press (2001).

  32. Bialek, W., Callan, C., andStrong, S., “Field Theories for Learning Probability Distributions,”Phys. Rev. Lett.,77,4693–4697 (1996).

    Article  MathSciNet  Google Scholar 

  33. Hasty, J., McMillen, D., Isaacs, F., andCollins, J.J., “Computational Studies of Gene Regulatory Networks: In Numero Molecular Biology,”Nature Reviews Genetics,2,268–279 (2001).

    Article  Google Scholar 

  34. Bussemaker, H., Siggia, E., andLi, H., “Regulatory Element Detection Using Correlation with Expression,”Nature Genetics,27,167–171 (2001).

    Article  Google Scholar 

  35. Bussemaker, H.J., Li, H., andSiggia, E.D., “Building a Dictionary for Genomes: Identification of Presumptive Regulatory Sites by Statistical Analysis,”PNAS USA,97,10096 (2000).

    MathSciNet  Google Scholar 

  36. Zinn-Justin, J., Quantum Field Theory and Critical Phenomena, Clarendon Press, Oxford (1996).

    Google Scholar 

  37. Tyson, J., Chen, C., andNovak, B., “Network Dynamics and Cell Physiology,”Nature Reviews Molecular Cell Biology,2,908–916 (2001).

    Article  Google Scholar 

  38. Shen-Orr, S., Milo, R., Mangan, S., andAlan, V., “Network Motifs in the Transcriptional Regulation Network of Escherichia Coli,”Nature Genetics,31,64–68 (2002).

    Article  Google Scholar 

  39. Yeung, M.K.S., Tegner, Y., andCollins, J.J., “Reverse Engineering Gene Networks Using Singular Valve Decomposition and Robust Regression,”PNAS USA,99,6163–6168 (2002).

    Google Scholar 

  40. Langmead, C., Yan, T., McClung, C.R., and Donald, B.R., “Phaseindependent Rhythmic Analysis of Genome-wide Expression Patterns,” Proc. 6th Annual Int. Conf. on Research in Computational Molecular Biology (RECOMB), Washington DC, 18–21 April, 205–215 (2002).

  41. MacKay, D.J.C., Information Theory, Inference and Learning Algorithms, Cambridge University Press (2003). See http://www.inference.phy.cam.ac.uk/mackay/itprnn/.

  42. Bialek, W., Nemenman, I., andTishby, N., “Predictability, Complexity, and Learning,”Neur. Comp.,13,2409–2463 (2001).

    Google Scholar 

  43. Tishby, N., Pereira, F., and Bialek, W., “The Information Bottleneck Method,” Proceedings of the 37th Annual Allerton Conference on Communication, Control and Computing, University of Illinois Press, 368–377 (1999).

  44. Naef, F., Lim, D.A., Patil, N., andMagnasco, M.O., “DNA Hybridization to Mismatched Templates: A Chip Study,”Physical Review E,65,040902R (2002).

    Article  Google Scholar 

  45. Naef, F., Lim, D.A., Patil, N., and Magnasco, M.O., “From Features to Expression: High-density Oligonucleotide Array Analysis Revisited,” Proceedings of the DIMACS Workshop on Analysis of Gene Expression Data 2001 (2002). Also e-print physics/0102010.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiggins, C.H., Nemenman, I. Process pathway inference via time series analysis. Experimental Mechanics 43, 361–370 (2003). https://doi.org/10.1007/BF02410536

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02410536

Key Words

Navigation