Skip to main content
Log in

Branching random walk with a critical branching part

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We consider the branching treeT(n) of the first (n+1) generations of a critical branching process, conditioned on survival till time βn for some fixed β>0 or on extinction occurring at timek n withk n /n→β. We attach to each vertexv of this tree a random variableX(v) and define\(S(v) = \Sigma _{w \varepsilon \pi (0,v)} X(w)\), where π(0,v) is the unique path in the family tree from its root tov. FinallyM n is the maximal displacement of the branching random walkS(·), that isM n =max{S(v):v∈T(n)}. We show that if theX(v), v∈T(n), are i.i.d. with mean 0, then under some further moment conditionn −1/2 M n converges in distribution. In particular {n −1/2 M n } n⩾1 is a tight family. This is closely related to recent results about Aldous' continuum tree and Le Gall's Brownian snake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous, D. (1991). The continuum random tree II: an overview, inStochastic Analysis, London Math. Soc. Lecture Note Series (M. T. Barlow and N. H. Bingham, eds.),167, 23–70.

  2. Aldous, D. (1993a). The continuum random tree III,Ann. Prob. 21, 248–289.

    MATH  MathSciNet  Google Scholar 

  3. Aldous, D. (1993b). Tree-based models for random distribution of mass,J. Stat. Phys. 73, 625–641.

    Article  MathSciNet  Google Scholar 

  4. Athreya, K. B. and Ney, P. E. (1972).Branching Processes, Springer-Verlag.

  5. Billingsley, P. (1968).Convergence of Probability Measures, John Wiley & Sons.

  6. Bramson, M. D. (1978). Maximal displacement for branching Brownian motion,Comm. Pure and Appl. Math. 31, 531–581.

    MATH  MathSciNet  Google Scholar 

  7. Burkholder, D. L. (1966). Martingale transforms,Ann. Math. Statist. 37, 1494–1504.

    MATH  MathSciNet  Google Scholar 

  8. Dembo, A., and Zeitouni, O. (1993). Large deviations for random distributions of mass, preprint.

  9. Durrett, R. (1978). Conditional limit theorems for some null recurrent Markov processes,Ann. Prob. 6, 798–818.

    MATH  MathSciNet  Google Scholar 

  10. Durrett, R., Kesten, H., and Waymire, E. (1991). On weighted heights of random trees,J. Theor. Prob. 4, 223–237.

    MathSciNet  Google Scholar 

  11. Dynkin, E. B., and Kuznetsov, S. (1994). Markov snakes and superprocesses, preprint.

  12. Harris, T. E. (1956). First passage and recurrence distributions,Trans. Amer. Math. Soc. 73, 471–486.

    Google Scholar 

  13. Harris, T. E. (1963).The Theory of Branching Processes, Springer-Verlag and Prentice Hall.

  14. Jagers, P. (1975).Branching Processes with Biological Applications, John Wiley & Sons.

  15. Kesten, H. (1986). Subdiffusive behavior of random walk on a random cluster,Ann. Inst. H. Poincaré 22, 425–487.

    MATH  MathSciNet  Google Scholar 

  16. Kesten, H. (1994). A limit theorem for weighted branching process trees, inThe Dynkin Festschrift. Markov Processes and their Applications (M. Freidlin, ed.), Birkhäuser, pp. 153–166.

  17. Kesten, H., and Lawler, G. F. (1992). A necessary and sufficient condition for making money from fair games,Ann. Prob. 20, 855–882.

    MathSciNet  Google Scholar 

  18. Kesten, H., and Pittel, B. (1994). A local limit theorem for the number of nodes, the height and the number of final leaves in a critical branching process tree, preprint.

  19. Kolchin, V. F. (1986). Random Mappings,Optimization Software.

  20. Lee, T-Y. (1990). Conditioned limit theorems of stopped critical branching Bessel processes,Ann. Prob. 18, 272–289.

    MATH  Google Scholar 

  21. Le Gall, J-F. (1991). Brownian excursions, trees and measure valued branching processes,Ann. Prob. 19, 1399–1439.

    MATH  Google Scholar 

  22. Le Gall, J-F. (1993). A class of path-valued Markov processes and its applications to superprocesses,Prob. Th. Rel. Fields 95, 25–46.

    Article  MATH  Google Scholar 

  23. Marcinkiewicz, J., and Zygmund, A. (1938). Quelques théorèmes sur les fonctions indépendantes,Studia Math. 7, 104–120.

    Google Scholar 

  24. Sawyer, S., and Fleischman, J. (1979). Maximum geographic range of a mutant allele considered as a subtype of a Brownian branching random field,Proc. Nat. Acad. Sci., USA 76, 872–875.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kesten, H. Branching random walk with a critical branching part. J Theor Probab 8, 921–962 (1995). https://doi.org/10.1007/BF02410118

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02410118

Key Words

Navigation