Skip to main content
Log in

Organization of the variant domains of α satellite DNA on human chromosome 21

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The de novo creation of long, homogeneous, satellite DNA domains was postulated previously to occur by saltatory amplification. In this paper, pulsed field gel electrophoresis analysis of the α satellite DNA block organization of the human chromosome 21 supports this hypothesis.

Double-dimension electrophoresis indicated that the variant copies of the basic α satellite repeat of chromosome 21 are organized in a single 3,150 Kblong domain. It was also established that the other satellite DNAs found in man (β, II, and III) are organized independently of the α satellite DNA block of the same chromosome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agresti A, Rainaldi G, Lobbiani A, Magnani I, Di Lernia R, Meneveri R, Siccardi AG, Ginelli E (1987) Chromosomal location by in situ hybridization of the human Sau3A family of DNA repeats. Hum Genet 75:326–332

    Article  CAS  PubMed  Google Scholar 

  • Bellis M, Pagès M, Roizès G (1987) Electrophorèse de l'ADN en champ pulsé. Rev Inst Pasteur Lyon 20:45–55

    Google Scholar 

  • Choo KH, Vissel B, Nagy A, Earle E, Kalitsis P (1991) A survey of genomic distribution of alpha satellite DNA on all the human chromosomes, and derivation of a new consensus sequence. Nucleic Acids Res 19:1179–1182

    CAS  PubMed  Google Scholar 

  • Chu G, Vollrath D, Davis RW (1986) Separation of large DNA molecules by contour-clamped homogenous electric fields. Science 234:1582–1585

    CAS  PubMed  Google Scholar 

  • Dod B, Mottez E, Desmarais E, Bonhomme F, Roizès G (1989) Concerted evolution of light satellite DNA in genusMus implies amplification and homogenization of large blocks of repeats. Mol Biol Evol 6:478–491

    CAS  PubMed  Google Scholar 

  • Dover G (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117

    Article  CAS  PubMed  Google Scholar 

  • Drinkwater RD, Burgoyne LA, Skinner JD (1986) Two human repetitive DNA elements: a new interspersed repeat found in the factor IX gene, and a satellite 11 tandem repeat sequence. Nucleic Acids Res 14:9541

    CAS  PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    Article  CAS  PubMed  Google Scholar 

  • Fowler C, Drinkwater R, Skinner J, Burgoyne L (1988) Human satellite-III DNA: an example of a “macrosatellite” polymorphism. Hum Genet 79:265–272

    Article  CAS  PubMed  Google Scholar 

  • Gosden JR, Mitchell AR, Buckland RA, Clayton RP, Evans HJ (1975) The location of four human satellite DNAs on human chromosomes. Exp Cell Res 92:148–158

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen AL, Bostock CJ, Bak AL (1987) Homologous subfamilies of human alphoid repetitive DNA on different nucleolus organizing chromosomes. Proc Natl Acad Sci USA 84:1075–1079

    CAS  PubMed  Google Scholar 

  • Lohe AR, Brutlag DL (1987) Adjacent satellite DNA segments inDrosophila: structure of junctions. J Mol Biol 194:171–179

    Article  CAS  PubMed  Google Scholar 

  • Manuelidis L (1978) Complex and simple sequences in human repeated DNAs. Chromosoma 66:1–21

    Article  CAS  PubMed  Google Scholar 

  • Marçais B, Bellis M, Gérard A, Pagès M, Boublik Y, Roizès G (1991a) Structural organization and polymorphism of the alpha satellite DNA sequences of chromosomes 13 and 21 as revealed by pulse field gel electrophoresis. Hum Genet 86:311–316

    PubMed  Google Scholar 

  • Marçais B, Charlieu JP, Allain B, Brun E, Bellis M, Roizès G (1991b) On the mode of evolution of alpha satellite DNA in human populations. J Mol Evol 33:42–48

    Article  PubMed  Google Scholar 

  • Marçais B, Gérard A, Bellis M, Roizès G (1991c) Taq I reveals two independent alphoid polymorphisms on human chromosomes 13 and 21. Hum Genet 86:307–310

    CAS  PubMed  Google Scholar 

  • Meneveri R, Agresti A, Marozzi A, Saccone S, Rocchi M, Archidiacono N, Corneo G, Della Valle G, Ginelli E (1993) Molecular organization and chromosomal location of human GC-rich heterochromatic blocks. Gene 123:227–234

    Article  CAS  PubMed  Google Scholar 

  • Meneveri R, Agresti A, Della Valle G, Talarico D, Siccardi AG, Ginelli E (1985) Identification of a human clustered G + C-rich DNA family of repeats (Sau3A family). J Mol Biol 186:483–489

    Article  CAS  PubMed  Google Scholar 

  • Oackey R, Tyler-Smith C (1990) Y Chromosome DNA haplotyping suggests that most European and Asian men are descended from one of two males. Genomics 7:325–330

    Article  Google Scholar 

  • Pech M, Streeck RE, Zachau HG (1979) Patchwork structure of a bovine satellite DNA. Cell 18:883–893

    Article  CAS  PubMed  Google Scholar 

  • Singer MF (1982) Highly repeated sequences in mammalian genomes. Int Rev Cytol 76:67–112

    Article  CAS  PubMed  Google Scholar 

  • Vissel B, Nagy A, Choo KHA (1992) A satellite III sequence shared by human chromosomes 13, 14, and 21 that is contiguous with α satellite DNA. Cytogenet Cell Genet 61:81–86

    Article  CAS  PubMed  Google Scholar 

  • Vitek MP, Devine E, Dutkowski R, Blume A, Mullikin-Kilpatrick D, Miller DL, Brown WT, Wray W (1985) Isolation of specific chromosomes and their DNA. Gene Anal Tech 2:16–21

    Article  CAS  Google Scholar 

  • Warburton PE, Willard HF (1990) Genomic analysis of sequence variation in tandemly repeated DNA. Evidence for localized homogeneous sequence domains within arrays of α-satellite DNA. J Mol Biol 216:3–16

    CAS  PubMed  Google Scholar 

  • Waye JS, Willard HF (1989) Human β satellite DNA: genomic organization and sequence definition of a class of highly repetitive tandem DNA. Proc Natl Acad Sci USA 86:6250–6254

    CAS  PubMed  Google Scholar 

  • Willard HF, Waye JS (1987) Hierarchical order in chromosome-specific human alpha-satellite DNA. Trends Genet 3:192–198

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marçais, B., Laurent, AM., Charlieu, JP. et al. Organization of the variant domains of α satellite DNA on human chromosome 21. J Mol Evol 37, 171–178 (1993). https://doi.org/10.1007/BF02407353

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02407353

Keywords

Navigation