Skip to main content
Log in

The evolutionary relationship of avian and mammalian myosin heavy-chain genes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Sequence comparisons of avian and mammalian skeletal and cardiac myosin heavy-chain isoforms are used to examine the evolutionary relationships of sarcomeric myosin multigene families. Mammalian fast-myosin heavy-chain isoforms forms from different species, with comparable developmental expression, are more similar to each other than they are to other fast isoforms within the same genome. In contrast, the developmentally regulated chicken fast isoforms are more similar to each other than they are to myosin heavy-chain isoforms in other species. Extensive regions of nucleotide identity among the chicken fast myosin heavy chains and in the mouse and rat α- and β-cardiac myosin heavy-chain sequences suggest that geneconversion-like mechanisms have played a major role in the concerted evolution of these gene families. We also conclude that the chicken fast myosin heavy-chain multigene family has undergone recent expansion subsequent to the divergence of birds and mammals and that both the developmental regulation and the specialization of myosin isoforms have likely developed independently in birds and mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnheim N (1983) Concerted evolution of multigene families. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer, Sunderland, MA, pp 38–61

    Google Scholar 

  • Bandman E (1985) Myosin isozyme transitions during muscle development, maturation and disease. Int Rev Cytol 97:97–131

    Article  PubMed  CAS  Google Scholar 

  • Bandman E, Gennett T (1988) Diversity of fast myosin heavy chain expression during development of gastrocnemius, biceps brachii, and posterior latissimus dorsi muscles in normal and dystrophic chickens. Dev Biol 130:220–231

    Article  PubMed  CAS  Google Scholar 

  • Bandman E, Moore LA, Arrizubieta MJ, Tidyman WE (1992) Chicken fast myosin heavy chains. In Gene expression in neuromuscular development. Raven Press, New York

    Google Scholar 

  • Barany M (1967) ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 50:197–218

    Article  PubMed  Google Scholar 

  • Bourke DL, Wylie SR, Wick M, Bandman E (1991) Differentiating skeletal muscle cells initially express a ventricular myosin heavy chain. Basic App Myol 1:13–21

    Google Scholar 

  • Buckingham ME (1985) Actin and myosin multigene families: their expression during the formation of skeletal muscle. Essays Biochem 20:77–109

    PubMed  CAS  Google Scholar 

  • Cerny L, Bandman E (1987) Expression of myosin heavy chain isoforms in regenerating myotubes of innervated and denervated chicken pectoral muscle. Dev Biol 119:350–362

    Article  PubMed  CAS  Google Scholar 

  • Cox RD, Weydert A, Barlow D, Buckingham ME (1991) Three linked myosin heavy chain genes clustered within 370 kb of each other show independent transcriptional and post-transcriptional regulation during differentiation of a mouse muscle cell line. Dev Biol 143:36–43

    Article  PubMed  CAS  Google Scholar 

  • Devereux J (1989) Sequence analysis of software package of the genetics computer group, version 7.0. University of Wisconsin Biotechnology Center, Madison WI

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    PubMed  CAS  Google Scholar 

  • Dover GA, Flavell R (1982) Genome evolution. Academic Press, New York

    Google Scholar 

  • Eller M, Stedman HH, Sylvester JE, Fertels SH, Rubinstein NA, Kelly AM, Sarkar S (1989) Nucleotide sequence of full length human embryonic myosin heavy chain cDNA. Nucleic Acids Res 17:3591–3592

    PubMed  CAS  Google Scholar 

  • Feghali R, Leinwand LA (1989) Molecular genetic characterization of a developmentally regulated human perinatal myosin heavy chain. J Cell Biol 108:1791–1797

    Article  PubMed  CAS  Google Scholar 

  • Fogel S, Mortimer R (1969) Informational transfer in meiotic gene conversion. Proc Natl Acad Sci USA 62:96–103

    PubMed  CAS  Google Scholar 

  • Gulick J, Kropp K, Robbins J (1987) The developmentally regulated expression of two linked myosin heavy-chain genes. FEBS Letts 169:79–84

    CAS  Google Scholar 

  • Hibner B, Burke WD, Eickbush TH (1991) Sequence identity in an early chorion multigene family is the result of localized gene conversion. Genetics 128:595–606

    PubMed  CAS  Google Scholar 

  • Higgins DG, Sharp PM (1989) Fast and sensitive multiple sequence alignments on a microcomputer. Computer Appl Biosci 5:151–153

    CAS  Google Scholar 

  • Izumo S, Nadal-Ginard B, Mahdavi V (1986) All members of the MHC multigene family respond to thyroid hormone in a highly tissue specific manner. Science 231:597–600

    PubMed  CAS  Google Scholar 

  • Kitiani Y, Olive LS, El-Ani AS (1962) Genetics of Sordaria fimicola. V. Aberrant segregation at the G locus. Am J Bot 49:697–706

    Article  Google Scholar 

  • Kourilsky P (1986) Molecular mechanisms for gene conversion in higher cell. Trends Genet 2:60:63

    Google Scholar 

  • Lagrutta AA, McCarthy JG, Scherczinger CA, Heywood SM (1989) Identification and developmental expression of a novel embryonic myosin heavy-chain gene in chicken. DNA 8:39–50

    PubMed  CAS  Google Scholar 

  • Leinwand LA, Saez L, McNally E, Nadal-Ginard B (1982) Isolation and characterization of human myosin heavy chain genes. Proc Natl Acad Sci USA 30:3716–3720

    Google Scholar 

  • Leinwand LA, Fournier RE, Nadal-Ginard B, Shows TB (1983) Multigene family for sarcomeric myosin heavy chain in mouse and human DNA: localization on a single chromosome. Science 221:766–799

    PubMed  CAS  Google Scholar 

  • Lompre AM, Schwartz K, d'Albis A, Lacombe G, Thiem NV, Swynghedauw B (1979) Myosin isoenzyme redistribution in chronic heart overload. Nature 282:105–107

    Article  PubMed  CAS  Google Scholar 

  • Lompre AM, Nadal-Ginard B, Mahdavi V (1984) Expression of the cardiac ventricular alpha- and beta-myosin heavy chain genes is developmentally and hormonally regulated. J Biol Chem 259:6437–6446

    PubMed  CAS  Google Scholar 

  • Lowey S, Cohen C (1962) Studies on the structure of myosin. J Mol Biol 4:293–308

    Article  PubMed  CAS  Google Scholar 

  • Lowey S, Sartore S, Gauthier GF, Waller GS, Hobbs AW (1986) Myosin isozyme transitions in embryonic chicken pectoralis muscle. In: Emerson CF, Fischman DA, Nadal-Ginard B, Siddiqui MAQ (eds) Molecular biology of muscle development. Alan R Liss Inc, New York, pp 225–236

    Google Scholar 

  • Maeda K, Sczakiel G, Wittinghofer A (1987) Characterization of cDNA coding for the complete light meromyosin protein of a rabbit fast skeletal muscle myosin heavy chain. Eur J Biochem 167:97–102

    Article  PubMed  CAS  Google Scholar 

  • Mahdavi V, Periassamy M, Nadal-Ginard B (1982) Molecular characterization of two myosin heavy chain genes expressed in the adult heart. Nature 297:659–664

    Article  PubMed  CAS  Google Scholar 

  • Mahdavi V, Chambers AP, Nadal-Ginard B (1984) Cardiac α-and β-myosin heavy chain genes are organized in tandem. Proc Natl Acad Sci USA 81:2626–2630

    PubMed  CAS  Google Scholar 

  • Mahdavi V, Izumo S, Nadal-Ginard B (1987) Developmental and hormonal regulation of sarcomeric myosin heavy chain gene family. Cir Res 60:804–814

    CAS  Google Scholar 

  • McLachlan AD, Karn J (1982) Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle. Nature 299:226–231

    Article  PubMed  CAS  Google Scholar 

  • McLachlan AD (1984) Structural implications of the myosin amino acid sequence. Ann Rev Biophys Bioeng 13:167–189

    Article  CAS  Google Scholar 

  • McNally EM, Kraft R, Bravo-Sehnder M, Taylor DA, Leinwand LA (1989) Full-length rat alpha and beta cardiac myosin heavy chain sequences. Comparisons suggest a molecular basis for functional differences. J Mol Biol 210:665–671

    Article  PubMed  CAS  Google Scholar 

  • Miller JB, Teal SB, Stockdale FE (1989) Evolutionarily conserved sequences of striated muscle myosin heavy chain isoforms. J Biol Chem 264:13122–13129

    PubMed  CAS  Google Scholar 

  • Molina MI, Kropp KE, Gulick J, Robbins J (1987) The sequence of an embryonic myosin heavy chain gene and isolation of its corresponding cDNA. J Biol Chem 262:6478–6488

    PubMed  CAS  Google Scholar 

  • Moore LA, Tidyman WE, Arrizubieta MJ, Bandman E (1992a) Gene conversions within the skeletal myosin multigene family. J Mol Biol 283:383–387

    Article  Google Scholar 

  • Moore LA, Arrizubieta MJ, Tidyman WE, Herman LA, Bandman E (1992b) Analysis of the chicken fast myosin heavy chain family: Localization of isoform-specific antibody epitopes and regions of divergence. J Mol Biol 225:1143–1151

    Article  PubMed  CAS  Google Scholar 

  • Nguyen HT, Gubits RM, Wydro RM, Nadal-Ginard B (1982) Sarcomeric myosin heavy chain is coded by a highly conserved multigene family. Proc Natl Acad Sci USA 79:5230–5234

    PubMed  CAS  Google Scholar 

  • Periasamy M, Wieczorek DF, Nadal-Ginard B (1984) Characterization of a developmentally regulated perinatal myosin heavy-chain gene expressed in skeletal muscle. J Biol Chem 259:13573–13578

    PubMed  CAS  Google Scholar 

  • Perler F, Efstratiadis A, Lomedico P, Gilbert W, Kolodner R, Dodgson J (1980) The evolution of genes: the chicken preproinsulin gene. Cell 20:555–566

    Article  PubMed  CAS  Google Scholar 

  • Petes T, Fink GR (1982) Gene conversion between repeated genes. Nature 300:216–217

    Article  PubMed  CAS  Google Scholar 

  • Pette D, Vrbova G (1985) Neural control of phenotypic expression in mammalian muscle fibers. Muscle Nerve 8:676–689

    Article  PubMed  CAS  Google Scholar 

  • Powers PA, Smithies O (1986) Short gene conversions in the human fetal globin gene region: a by-product of chromosome pairing during meiosis? Genetics 112:343–358

    PubMed  CAS  Google Scholar 

  • Radice GP, Malacinski GM (1989) Expression of myosin heavy chain transcripts during Xenopus laevis development. Dev Biol 133:562–568

    Article  PubMed  CAS  Google Scholar 

  • Remington RD, Schork AM (1970) Statistics with applications to the biological and health sciences. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Robbins J, Horan T, Gulick J, Kropp K (1986) The chicken myosin heavy chain family. J Biol Chem 261:6606–6612

    PubMed  CAS  Google Scholar 

  • Saez LJ, Gianola KM, McNally EM, Feghali R, Eddy R, Shows TB, Leinwand LA (1987) Human cardiac myosin heavy chain genes and their linkage in the genome. Nucleic Acids Res 15:5443–5459

    PubMed  CAS  Google Scholar 

  • Saez L, Leinwand LA (1986) Characterization of diverse forms of myosin heavy chain expressed in adult human skeletal muscle. Nucleic Acids Res 14:2951–2969

    PubMed  CAS  Google Scholar 

  • Sanchez A, Jones KW, Gulick JD, Doetschman T, Robbins J (1991) Myosin heavy chain expression in mouse embryoid bodies: Anin vitro developmental study. J Bio Chem 266:22419–22426

    CAS  Google Scholar 

  • Schultes NP, Szostak JW (1990) Decreasing gradients of gene conversion on both sides of the initiation site for mitotic recombination at the ARG4 locus in yeast. Genetics 126:813–822

    PubMed  CAS  Google Scholar 

  • Sheetz MP, Chasan R, Spudich JA (1984) ATP-dependent movement of myosinin vitro: characterization of a quantitative assay. J Cell Biol 99:1867–1871

    Article  PubMed  CAS  Google Scholar 

  • Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds: a study in molecular evolution. New Haven, Yale University Press

    Google Scholar 

  • Shapiro S (1991) Uniformity in the nonsynonymous substitution rates of embryonic β-globin genes of several vertebrate species. J Mol Evol 32:122–127

    PubMed  CAS  Google Scholar 

  • Starck J, Bouhass R, Morlé F, Godet J (1990) Extent and frequency of a short conversion between human Aγ and Gγ fetal globin genes. Hum Genet 24:179–184

    Google Scholar 

  • Stedman HH, Eller M, Julian EH, Fertels SH, Sarkar S, Sylvester JE, Kelly AM, Rubinstein NA (1990) J Biol Chem 256:3568–3576

    Google Scholar 

  • Strehler EE, Strehler-Page MA, Perriard JC, Periasamy M, Nadal-Ginard B (1986) Complete nucleotide and encoded amino acid sequence of a mammalian myosin heavy chain gene. J Mol Biol 190:291–317

    Article  PubMed  CAS  Google Scholar 

  • Stewart AFR, Camoretti-Mercado B, Perlman D, Gupta M, Jakovcic S, Zak R (1991) Structural and phylogenetic analysis of the chicken ventricular myosin heavy chain rod. J Mol Evol 33:357–366

    Article  PubMed  CAS  Google Scholar 

  • Termin A, Staron RS, Pette D (1989) Changes in myosin heavy chain isoforms during chronic low-frequency stimulation of rat hind-limb muscles. A single fiber study. Eur J Biochem 186:749–754

    Article  PubMed  CAS  Google Scholar 

  • Umeda PK, Kavinsky CJ, Sinha AM, Hsum J-J, Jakovcic S, Rabinowitz M (1983) Clones mRNA sequences for two types of embryonic myosin heavy chains from chicken skeletal muscle. II. Expression during development using S! nuclease mapping. J Biol Chem 258:5206–5214

    PubMed  CAS  Google Scholar 

  • Walsh JB (1987) Sequence-dependent gene conversion: can duplicated gene diverge fast enough to escape conversion? Genetics 117:543–557

    PubMed  CAS  Google Scholar 

  • Weydert A, Barton P, Harris AJ, Pinset C, Buckingham M (1987) Developmental pattern of mouse skeletal myosin heavy chain gene transcripts in vivo and in vitro. Cell 49:121–129

    Article  PubMed  CAS  Google Scholar 

  • Wilson AC, Carlson SS, White TJ (1977) Biochemical Evolution. Ann Rev Biochem 46:573–639

    Article  PubMed  CAS  Google Scholar 

  • Wines DR, Brady JM, Southard EM, MacDonald RJ (1991) Evolution of the rat kallikrein gene family: gene conversion leads to functional diversity. J Mol Evol 32:476–492

    Article  PubMed  CAS  Google Scholar 

  • Wydro RM, Nguyen HT, Gubits RM, Nadal-Ginard B (1983) Characterization of sarcomeric myosin heavy chain genes. J Biol Chem 258:670–678

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, L.A., Tidyman, W.E., Arrizubieta, M.J. et al. The evolutionary relationship of avian and mammalian myosin heavy-chain genes. J Mol Evol 36, 21–30 (1993). https://doi.org/10.1007/BF02407303

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02407303

Key words

Navigation