Skip to main content
Log in

The effect of cholecalciferolin vivo on proteins and lipids of skeletal muscle from rachitic chicks

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The protein and lipid constituents of skeletal muscle subcellular fractions isolated from chicks fed a vitamin D-deficient diet for 3 weeks and chicks repleted with cholecalciferol (vitamin D3) were analyzed. Administration of the sterol markedly altered the protein composition of mitochondria. The changes were localized in the inner membranes and consisted of a modification of the relative amounts of proteins of approximate mol wt of 83,000, 58,000, 42,000, and 34,000. In addition, treatment with vitamin D3 modified the distribution pattern of components of the actomyosin contractile complex. An increase in actin and troponin C was particularly noticeable. No differences between rachitic and treated animals were detected in the protein composition of sarcoplasmic reticulum membranes and postmicrosomal soluble fraction. A significant increase in the phospholipid content of sarcoplasmic reticulum (P<0.05), and to a lesser extent of mitochondria, was observed in repleted chicks. The relative proportions of individual phospholipids, however, were not changed. Injection of an acute dose of cholecalciferol to chicks less severely depleted in vitamin D significantly stimulated the incorporation of32PO4 in vivo to muscle homogenates, mitochondria, and sarcoplasmic reticulum (P<0.05). As the increases in specific activities of sarcoplasmic inorganic P and membrane lipid P were similar whereas that of serum remained unchanged, the results are compatible with the idea that vitamin D3 stimulates phosphate fluxes across muscle membranes. The sterol produced minor modifications in the fatty acid composition of sarcoplasmic reticulum (P<0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith R, Stern G (1967) Myopathy, osteomalacia and hyperthyroidism. Brain: 90:593–602

    CAS  PubMed  Google Scholar 

  2. Floyd M, Ayyar DR, Barwick DD, Hudgson P, Weightman D (1974) Myopathy in chronic renal failure. West J Med 43:509–523

    CAS  Google Scholar 

  3. Schott CD, Wills MR (1976) Muscle weakness in osteomalacia. Lancet 2:626–629

    Article  Google Scholar 

  4. Peacock M, Heyburn PJ (1977) Effect of vitamin D metabolites on proximal muscle weakness. Calcif Tissue Res 24 Suppl R20

  5. Rodman JS, Baker T (1978) Changes in the kinetics of muscle contraction in vitamin D-depleted rats. Kidney Int 13:189–193

    CAS  PubMed  Google Scholar 

  6. Pleasure D, Wyszynski B, Sumner A, Schotland D, Feldmann B, Nugent N, Hitz H (1979) Skeletal muscle calcium metabolism and contractile force in vitamin D-deficient chicks. J Clin Invest 64:1157–1167

    CAS  PubMed  Google Scholar 

  7. Weber A, Herz R, Reiss I (1964) Role of calcium in contraction and relaxation of muscle. Fed Proc 23:896–900

    CAS  PubMed  Google Scholar 

  8. Ebashi S, Endo M (1968) Calcium ion and muscle contraction. Prog Biophys Mol Biol 18:123–183

    Article  CAS  PubMed  Google Scholar 

  9. Curry OB, Bastein JF, Francis MJO, Smith R (1974) Calcium uptake by sarcoplasmic reticulum of muscle from vitamin D-deficient rabbits. Nature 249:83–84

    Article  CAS  PubMed  Google Scholar 

  10. Pointon JJ, Francis MJO, Smith R (1979) Effect of vitamin D deficiency on sarcoplasmic reticulum function and troponinc concentration of rabbit skeletal muscle. Clin Sci 57:257–263

    CAS  PubMed  Google Scholar 

  11. Heimberg KW, Matthews C, Ritz E, Augustin J, Hasselbach W (1976) Active Ca transport of sarcoplasmic reticulum during experimental uremia. Eur J Biochem 61:207–213

    Article  CAS  PubMed  Google Scholar 

  12. Matthews C, Heimberg KW, Ritz E, Agostini B, Fritzche J, Hasselbach W (1977) Effect of 1,25-dihydroxycholecalciferol on impaired calcium transport by the sarcoplasmic reticulum in experimental uremia. Kidney Int 11:227–235

    CAS  PubMed  Google Scholar 

  13. Boland RL, Boland AR de, Ritz E, Hasselbach W (in press) Effect of 1,25-dihydroxycholecalciferol on sarcoplasmic reticulum calcium transport in strontium-fed chicks. Calcif Tissue Res

  14. Boland RL, Matthews C, Boland AR de, Ritz E, Hasselbach W (in press) Reversal of decreased phosphorylation of sarcoplasmic reticulum calcium transport ATPase by 1,25-dihydroxycholecalciferol in experimental uremia. Calcif Tissue Res

  15. Birge SJ, Haddad JG (1975) 25-hydroxycholecalciferol stimulation of mucle metabolism. J Clin Invest 56:1100–1107

    CAS  PubMed  Google Scholar 

  16. Green DE, Tzagoloff A (1966) Role of lipids in the structure and function of biological membranes. J Lipid Res 7:587–602

    CAS  PubMed  Google Scholar 

  17. Martonosi A, Donley J, Halpin RA (1968) Sarcoplasmic reticulum III. The role of phospholipids in the ATPase activity and Ca transport. J Biol Chem 243:61–70

    CAS  PubMed  Google Scholar 

  18. Hasselbach W (1979) The sarcoplasmic calcium pump. A model of energy transduction in biological membranes. Top Curr Chem 78:1–56

    CAS  PubMed  Google Scholar 

  19. Bygrave FL (1978) Mitochondria and the control of intracellular calcium. Biol Rev 53:43–79

    CAS  PubMed  Google Scholar 

  20. Wasserman RH, Taylor AM (1973) Intestinal absorption of phosphate in the chick: Effect of vitamin D3 and other parameters. J Nutr 103:586–599

    CAS  PubMed  Google Scholar 

  21. Roskin ML, Mariani MCO (1973) Micrometodo colorimetrico directo para la determinacion cuantitativa de calcio serico y urinario. Bioquimica Clinica 8:405

    Google Scholar 

  22. Chen PS, Toribara TY, Warner H (1956) Microdetermination of phosphorus. Anal Chem 28:1756–1758

    Article  CAS  Google Scholar 

  23. Boland R, Martonosi A, Tillack TW (1974) Developmental changes in the composition and function of sarcoplasmic reticulum. J Biol Chem 249:612–623

    CAS  PubMed  Google Scholar 

  24. Sottocasa GL, Kuylentierna B, Ernster L, Bergstrand A (1967) Separation and some enzymic properties of the inner and outer membranes of rat liver mitochondria. Methods Enzymol 10:448–463

    Article  CAS  Google Scholar 

  25. Schnaitman CA, Erwin VG, Greenawalt JW (1967) The submitochondrial localization of monoamine oxidase. An enzymic marker for the outer membrane of rat liver mitochondria. J Cell Biol 32:719–735

    Article  CAS  PubMed  Google Scholar 

  26. Schnaitman C, Greenawalt JW (1968) Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol 38:158–175

    Article  CAS  PubMed  Google Scholar 

  27. Hasselbach W (1952) Die Umwandlung von Aktomyosin-ATPase in L-myosin-ATPase durch Aktivatoren und die resultierenden Aktivierungseffekte. Z Naturforsch 76:163–174

    Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  29. Van Hoff H, Hers HG (1968) The abnormalities of lysosomal enzymes in mucopolysaccharidoses. Eur J Biochem 7:34–44

    Article  Google Scholar 

  30. Song CS, Bodansky O (1967) Subcellular localization and properties of 5′nucleotidase in the rat liver. J Biol Chem 242:694–699

    CAS  PubMed  Google Scholar 

  31. Katz AM, Repke DI, Upschaw JE, Polascik MA (1970) Characterization of dog microsomes: Use of zonal centrifugation to fractionate fragmented sarcoplasmic reticulum, Na+, K+-activated ATPase and mitochondrial fragments. Biochim Biophys Acta 205:473–490

    Article  CAS  PubMed  Google Scholar 

  32. Walter H, Hasselbach W (1973) Properties of the calcium independent ATPase of the membranes of the sarcoplasmic reticulum delipidated by the nonionic detergent Triton X-100. Eur J Biochem 36:110–119

    Article  CAS  PubMed  Google Scholar 

  33. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  34. Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468

    CAS  PubMed  Google Scholar 

  35. Snedecor GW, Cochran WG (1967) Statistical methods. The Iowa State University Press, Ames, Iowa

    Google Scholar 

  36. Boland AR de (1982) Estudios sobre el mecanismo de acción de la vitamina D en músculo esquelético. PhD thesis. Universidad Nacional del Sur, Argentina

    Google Scholar 

  37. Vanderkooi JM, Martonosi A (1971) Sarcoplasmic reticulum. XVI. Permeability of phosphatidyl choline vesicles for calcium. Arch Biochem Biophys 147:632–646

    Article  CAS  PubMed  Google Scholar 

  38. Mukherjee A, Zerwekh JE, Nicar MJ, McCoy K, Buja LM (1981) Effect of chronic vitamin D deficiency on chick heart mitochondrial oxidative phosphorylation. J Mol Cell Cardiol 13:171–183

    Article  CAS  PubMed  Google Scholar 

  39. Lehninger AL (1970) Mitochondria and calcium ion transport. Biochem J 119:129–138

    CAS  PubMed  Google Scholar 

  40. Hobden AN, Harding M, Lawson DEM (1980) 1,25-dihydroxycholecalciferol stimulation of a mitochondrial protein in chick intestinal cells. Nature 288:718–720

    Article  CAS  PubMed  Google Scholar 

  41. Ströder J, Arensmeyer E (1965) Der Actomyosin-Gehalt der Skeletmuskulatur bei experimenteller Rachitis. Klin Wochenschr 43:1201–1202

    Article  PubMed  Google Scholar 

  42. Wilson PW, Lawson DEM (1978) Incorporation of3H-leucine into an actin-like protein in response to 1,25-dihydroxycholecalciferol in chick intestinal brush borders. Biochem J 173:627–631

    CAS  PubMed  Google Scholar 

  43. Tonomura (1973) Muscle proteins, muscle contraction and cation transport. University of Tokyo Press, pp 192–235

  44. Kreusser W, Ritz E, Boland R, Brachmann J (1981) Function of the sarcoplasmic reticulum (SR) in hypophosphatemic myopathy. J Adv Exp Med Bio 313–321

  45. Rasmussen H, Matsumoto T, Kreutter D (1982) Changes in lipid metabolism and membrane structure after 1,25-(OH)2-D3 administration. Fifth Workshop on Vitamin D, Abstract Williamsburgh, Virginia, p. 103

  46. Elgavish A, Rifkind J, Sacktor B (1982) Evidence for a directin vitro effect of vitamin D3 on the phospholipids of isolated renal brush border membranes. Fifth Workshop on Vitamin D, Abstract, Williamsburgh, Virginia, p. 107

  47. Hasselbach W (1974) Sarcoplasmic membrane ATPases. In: Boyer PD (ed) The enzymes. Academic Press. New York, p 431

    Google Scholar 

  48. Bikle DD, Zolock DT, Morrissey RL, Herman RH (1978) Independence of 1,25-dihydroxyvitamin D3 mediated calcium transport from de novo RNA and protein synthesis. J Biol Chem 253:484–488

    CAS  PubMed  Google Scholar 

  49. Rasmussen H, Fontaine O, Max E, Goodman DBP (1977) The effect of 1α-hydroxyvitamin D3 treatment on the structure and function of chick intestine brush border membrane. In: Norman AW, Schaefer K, V. Herrath D, Grigoleit, HG, Coburn JW, DeLuca HF, Mawer EB, Suda T (eds) Vitamin D: biochemical, chemical and clinical aspects related to calcium metabolism. Proc. 3rd. Workshop on Vitamin D, Walter de Gruyter, Berlin, pp 913–925

    Google Scholar 

  50. O'Doherty PJA (1978) 1,25-dihydroxyvitamin D3 increases the activity of the intestinal phosphatidylcholine deacylation-reacylation cycle. Lipids 14:75–77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Boland, A.R., Albornoz, L.E. & Boland, R. The effect of cholecalciferolin vivo on proteins and lipids of skeletal muscle from rachitic chicks. Calcif Tissue Int 35, 798–805 (1983). https://doi.org/10.1007/BF02405126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02405126

Key words

Navigation