Skip to main content
Log in

Duality theorems in the theory of nonlinear oscillations

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. P. S. Aleksandrov, Combinatorial Topology [in Russian], Gostekhizdat, Moscow (1947).

    Google Scholar 

  2. N. A. Bobylev, “The theory of factor-methods for approximate solution of nonlinear problems,” Dokl. Akad. Nauk SSSR,199, No. 1, 9–12 (1971).

    MATH  MathSciNet  Google Scholar 

  3. N. A. Bobylev and A. M. Dement'eva, “A duality theorem,” in: Applied Methods of Functional Analysis [in Russian], Izd. VGU, Voronezh (1985), pp. 29–33.

    Google Scholar 

  4. N. A. Bobylev, A. M. Krasnosel'skii, and M. A. Krasnosel'skii, “Stability of periodic oscillations and their construction by the harmonic balance method,” Avtomat. Telemekh., No. 7, 179–181 (1989).

    MathSciNet  Google Scholar 

  5. N. A. Bobylev and M. A. Krasnosel'skii, “Parameter functionalization and duality theorem for autonomous systems,” Diff. Uravn.,6, No. 11, 1946–1952 (1970).

    MathSciNet  Google Scholar 

  6. N. A. Bobylev and M. A. Krasnosel'skii, “Operators with continua of fixed points,” Dokl. Akad. Nauk SSSR,205, No. 5, 1015–1018 (1972).

    MathSciNet  Google Scholar 

  7. N. A. Bobylev and M. A. Krasnosel'skii, “Approximate construction of oscillation modes in automatic control systems,” Dokl. Akad. Nauk SSSR,272, No. 2, 267–271 (1983).

    MathSciNet  Google Scholar 

  8. N. A. Bobylev and M. A. Krasnosel'skii, “The harmonic balance method in the natural oscillation problem,” Avtomat. Telemekh., No. 9, 44–51 (1984).

    MathSciNet  Google Scholar 

  9. P. P. Zabreiko and M. A. Krasnosel'skii, “Operator iterations and fixed points,” Dokl. Akad. Nauk SSSR,196, No. 5, 1006–1009 (1971).

    MathSciNet  Google Scholar 

  10. P. P. Zabreiko, M. A. Krasnosel'skii, and V. V. Strygin, “On rotation invariance principles,” Izv. Vuzov, Matem., No. 5, 51–57 (1972).

    MathSciNet  Google Scholar 

  11. P. P. Zabreiko and V. P. Tikhonov, “Defining equations and the duality principle,” Sib. Mat. Zh.,24, No. 1, 79–88 (1983).

    MathSciNet  Google Scholar 

  12. M. A. Krasnosel'skii, “Approximate computation of eigenvalues and functions of a perturbed operator,” Dokl. Akad. Nauk UkrSSR, No. 3 (1953).

  13. M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations [in Russian], Gostekhizdat, Moscow (1956).

    Google Scholar 

Download references

Authors

Additional information

The study has been carried out within the framework of the CTIAC international project with the support of the Russian Foundation of Basic Research (grant 95-01-21076).

Translated from Metody Analiza Nelineinykh Sistem, Moscow University, pp. 5–29, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobylev, N.A., Korovin, S.K. Duality theorems in the theory of nonlinear oscillations. Comput Math Model 9, 1–23 (1998). https://doi.org/10.1007/BF02404081

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02404081

Keywords

Navigation