Skip to main content
Log in

Fabrication and characterization of some novel reaction-bonded silicon carbide materials

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Attempts have been made to produce modified reaction-bonded silicon carbide (RBSC) ceramics by incorporating a dispersion of other phases into the initial powder mix. ZrC, TiC, TaC and B4C were chosen as additives together with TiB2 as a phase likely to produce microcrack toughening in the final compact. During fabrication an important factor appears to be the possible reactions of the added phase with liquid silicon during the infiltration stage of the process. Thus, while all the carbides react with liquid silicon to form refractory silicides and new silicon carbide, this only significantly affected the reaction-bonding process if the dissolution/reaction kinetics were so fast as to disrupt the formation of the new silicon carbide framework which grows epitaxially to bond the existing silicon carbide particles together. As with conventional RBSC, the initial SiC grits play no part in any reaction except to act as nucleation sites for the new SiC. The microstructures of the various new materials have been characterized by reflected light microscopy, scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffraction. This has led to an appraisal of the high-temperature reactions observed to have occurred and the unreliability of the high-temperature thermochemical data used to predict their occurrence. The mechanical properties of the new materials have been investigated by indentation testing (hardness and fracture toughness), including temperature-variant tests. Results are presented and the possibility for improving the properties of RBSC are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Popper, in “Special Ceramics” (Heywood Press, London, 1960) p. 209.

    Google Scholar 

  2. P. Kennedy, in “Non-Oxide Technical and Engineering Ceramics”, edited by S. Hampshire (Elsevier Applied Science, London, 1986) p. 301.

    Google Scholar 

  3. G. R. Sawyer andT. F. Page,J. Mater. Sci. 13 (1978) 885.

    Article  CAS  Google Scholar 

  4. J. N. Ness andT. F. Page,ibid. 21 (1986) 1377.

    Article  CAS  Google Scholar 

  5. C. W. Forrest, P. Kennedy andJ. V. Shennan, in “Special Ceramics 5”, edited by P. Popper (British Ceramic Research Association, Stoke-on-Trent, 1972) p. 99.

    Google Scholar 

  6. M. H. Lewis, G. Leng-Ward andC. Jasper, in “Proceedings of the 1st International Conference on Ceramic Powder Processing Science”, edited by G. L. Messing, E. R. Fuller and H. Hausner (American Ceramic Society, Westerville, OH, 1988) p. 1019.

    Google Scholar 

  7. K. Negita,J. Amer. Ceram. Soc. 69 (1986) C308.

    Article  Google Scholar 

  8. D. Magley, R. A. Winholtz andK. T. Faber,ibid. 73 (1990) 1641.

    Article  CAS  Google Scholar 

  9. A. J. Whitehead, T. F. Page andI. Higgins,Ceram. Engng Sci. Proc. 10 (1989) 1108.

    Article  CAS  Google Scholar 

  10. M. G. S. Naylor, PhD thesis, University of Cambridge, UK (1981).

    Google Scholar 

  11. M. Hansen, “Constitution of Binary Alloys”, 2nd Edn (McGraw-Hill, London, 1958).

    Google Scholar 

  12. S. Prochazka, in “Proceedings of the 3rd International Conference on Silicon Carbide”, Miami, 17–20 September 1973, edited by R. C. Marshall, J. W. Faust Jr, and C. E. Ryan (University of South Carolina Press, Columbia, SC) p. 394.

    Google Scholar 

  13. N. W. Jepps andT. F. Page,J. Micros. 124 (1981) 227.

    CAS  Google Scholar 

  14. R. I. Scace andG. A. Slack,J. Chem. Phys. 30 (1959) 1551.

    Article  CAS  Google Scholar 

  15. P. Kennedy, private communication (1987).

  16. A. M. Stoneham andP. W. Tasker, “Designing Interfaces for Technological Applications”, edited by S. D. Peteves (Elsevier Applied Science, London, 1989) p. 217.

    Google Scholar 

  17. O. Kubaschewski andC. B. Alcock, “Metallurgical Thermochemistry”, 5th Edn (Pergamon Press, Oxford, 1979) p. 267.

    Google Scholar 

  18. JANAF (Joint Army, Navy, Air Force) Thermochemical Tables (National Bureau of Standards, Washington, DC, 1971).

    Google Scholar 

  19. D. A. Robins andI. Jenkins,Acta Metall 3 (1955) 598.

    Article  CAS  Google Scholar 

  20. S. G. Davis, D. F. Apthrop andA. W. Searcy,J. Chem. Phys. 34 (1961) 659.

    Article  CAS  Google Scholar 

  21. C. E. Meyers andA. W. Searcy,J. Amer. Chem. Soc. 79 (1957) 526.

    Article  Google Scholar 

  22. P. M. Sargent, PhD thesis, University of Cambridge, UK (1979).

    Google Scholar 

  23. S. J. Bull, T. F. Page andE. H. Yoffe,Phil. Mag. Lett. 59 (1989) 281.

    CAS  Google Scholar 

  24. P. Schwarzkopf andR. Kieffer, “Refractory Hard Metals: Borides, Carbides, Nitrides and Silicides” (Macmillan, New York, 1953) p. 328.

    Google Scholar 

  25. A. G. Atkins, A. Silvéro andD. Tabor,J. Inst. Metals 94 (1966) 369.

    CAS  Google Scholar 

  26. J. A. Yeomans, PhD thesis, University of Cambridge, UK (1986).

    Google Scholar 

  27. G. R. Anstis, P. Chantikul, B. R. Lawn andD. B. Marshall,J. Amer. Ceram. Soc. 64 (1981) 533.

    CAS  Google Scholar 

  28. J. N. Ness, PhD thesis, University of Cambridge, UK (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitehead, A.J., Page, T.F. Fabrication and characterization of some novel reaction-bonded silicon carbide materials. J Mater Sci 27, 839–852 (1992). https://doi.org/10.1007/BF02403904

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02403904

Keywords

Navigation