Skip to main content
Log in

Wettability and interfacial energies in SiC-liquid metal systems

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The sessile drop technique is used to measure the contact angles of molten Si, Sn, Cu and Ni in contact with mono- and polycrystalline α-SiC as well as CVD β-SiC in purified argon atmosphere and at various temperatures. The contact angle of silicon, near its melting point, is about 38° on a mono- as well as polycrystalline α-SiC substrate and about 41.5° on β-SiC. Tin does not wet the SiC. Using data from the available literature, the work of adhesion and the interfacial energy between SiC and Si or Sn were calculated. In the α-SiC-Sn system, both quantities are linearly dependent on temperature in the investigated temperature range 523–1073 K. The metals copper and nickel react with silicon carbide. The silicon content of the copper drop depends on the annealing temperature. The nickel drop after cooling forms the compound Ni3Si2. The interferometric measured groove angle of SiC (thermal etching) in vacuum at 2020 K gives a mean value of 157.6±5.8°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ziegler, “Keramische Kontruktionswerkstoffe-Stand der Technik” (VDI-Tagung, Essen, April 1987) p. 1.

    Google Scholar 

  2. G. Willmann,Keram. Z. 36 (1984) 669.

    CAS  Google Scholar 

  3. P. Nikolopoulos, G. Ondracek andD. Sotiropoulou,Ceram. Int. 15 (1989) 201.

    Article  CAS  Google Scholar 

  4. S. Amelinckx, N. F. Binnedijk andW. Dekeyser,Physica 19 (1953) 1173.

    Article  Google Scholar 

  5. F. Bashfort andS. C. Adams, “An Attempt to Test the Theories of Capillary Action” (Cambridge University Press, Cambridge, 1983).

    Google Scholar 

  6. T. J. Whalen andA. T. Anderson,J. Amer. Ceram. Soc. 58 (1975) 396.

    CAS  Google Scholar 

  7. Yu. V. Naidich andG. M. Nevodnik,Bull. Acad. Sci. USSR — Inorg. Mater. 5 (1969) 2066.

    CAS  Google Scholar 

  8. V. L. Yupko andG. G. Gnesin,Poroshka. Met. 130 (1973) 97.

    Google Scholar 

  9. W. Köhler,Aluminium 51 (1975) 443.

    Google Scholar 

  10. B. C. Allen andW. D. Kingery,Trans. Met. Soc. AIME 215 (1959) 30.

    CAS  Google Scholar 

  11. P. Nikolopoulos andG. Ondracek, “Verbundwerkstoffe” (Deutsche Gesellschaft für Metallkunde (DGM), Oberursel, 1981) p. 391.

    Google Scholar 

  12. M. Hansen andK. Anderko, “Constitution of Binary Alloys” (McGraw-Hill, New York, 1958).

    Google Scholar 

  13. G. G. Gnesin andYu. V. Naidich,Poroshka Met. 2 (1969) 57.

    Google Scholar 

  14. J. T. Klomp, in “Designing Interfaces for Technological Applications”, edited by S. D. Peteves (Elsevier, London, 1989) p. 127.

    Google Scholar 

  15. M. R. Jackson, R. L. Mehan, A. M. Davis andE. L. Hall,Metall. Trans. A. 14A (1983) 355.

    Google Scholar 

  16. R. H. Bruce, in “Science of Ceramics”, Vol. 2, edited by G. H. Stewart (Academic, London, 1965) p. 359.

    Google Scholar 

  17. B. C. Allen, in “Liquid Metals”, edited by S. Z. Beer (Dekker, New York, 1972) p. 161.

    Google Scholar 

  18. G. Lang,Z. Metallkde 67 (1976) 549.

    CAS  Google Scholar 

  19. W. P. Minnear,J. Amer. Ceram. Soc. 65 (1982) C10.

    CAS  Google Scholar 

  20. R. Warren andC.-H. Andersson,Composities 15 (1984) 101.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolopoulos, P., Agatho Pou Los, S., Angelopoulos, G.N. et al. Wettability and interfacial energies in SiC-liquid metal systems. J Mater Sci 27, 139–145 (1992). https://doi.org/10.1007/BF02403656

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02403656

Keywords

Navigation