Skip to main content
Log in

Intercrystalline cracking, grain-boundary sliding, and delayed elasticity at high temperatures

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The hypothesis of an interrelation between grain-boundary sliding and delayed elasticity in polycrystalline materials at high homologous temperatures is used to investigate the conditions conducive to microcracking. It is known that a material may exhibit cracking activity on attaining a critical delayed-elastic strain corresponding to a critical grainboundary sliding displacement. Experimental data on ice at temperatures >0.9T m are used to verify this concept. The new criterion is then extended to develop simple, selfconsistent equations describing the interdependence of stress, strain, time, temperature, and grain size in predicting the onset of structural degradation due to microcracking and hence possible failure by fracture or rupture. The merit of the theory lies in its ability to forecast explicitly a large number of commonly observed high-temperature phenomena, including superplasticity, brittle-ductile transition, and the stress and temperature dependence of the apparent activation energy for fracture. One derivation makes it clear that cracking occurs when a critical stress depending only on temperature (and independent of grain size) is exceeded. The near constancy of fracture strain in the quasi brittle range can also be predicted

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. McLean, “Grain Boundaries in Metals” (Clarendon Press, Oxford, 1957).

    Google Scholar 

  2. R. C. Gifkins, in “Fracture”, edited by B. C. Averbach, D. K. Felbeck, G. T. Hahn and D. A. Thomas (Wiley Interscience, New York, 1959) p. 579.

    Google Scholar 

  3. H. Conrad, in “Mechanical Behavior of Materials at Elevated Temperatures”, edited by J. E. Dorn (McGraw-Hill, New York, 1961) p. 218.

    Google Scholar 

  4. A. H. Cottrell, Intercrystalline Creep Fractures, in “Structural Processes in Creep” (Iron and Steel Institute, London, 1961) p. 1.

    Google Scholar 

  5. F. Garofalo, “Fundamentals of Creep and Creep-Rupture in Metals” (Macmillan Company, New York, 1965).

    Google Scholar 

  6. G. W. Greenwood, in “Interfaces”, edited by R. C. Gifkins (Butterworths, London, 1969) p. 223.

    Google Scholar 

  7. N. J. Grant, in “Fracture”, Vol. III, edited by H. Liebowitz (Academic Press, New York, 1971), p. 483.

    Google Scholar 

  8. A. J. Perry,J. Mater. Sci. 9 (1974) 1016.

    Article  CAS  Google Scholar 

  9. A. G. Evans andT. G. Langdon,Prog. Mater. Sci. 21 (314) (1976) 171.

    Article  CAS  Google Scholar 

  10. M. F. Ashby, C, Gandhi andD. M. R. Taplin,Acta Metall. 27 (5) (1979) 699.

    Article  CAS  Google Scholar 

  11. C. Zener, The micro-mechanism of fracture, in “Fracturing of Metals” (American Society for Metals, Cleveland, Ohio, 1948) p. 3.

    Google Scholar 

  12. R. C. Gifkins,Acta Metall. 4 (1956) 98.

    Article  Google Scholar 

  13. C. W. Chen andE. S. Machlin,ibid. 4 (1956) 655.

    Article  Google Scholar 

  14. J. Intrater andE. S. Machlin,ibid. 7 (1959) 140.

    Article  CAS  Google Scholar 

  15. N. K. Sinha,Phil. Mag. 40 (1979) 825.

    CAS  Google Scholar 

  16. D. McLean, B. F. Dyson andD. M. R. Taplin, The prediction of creep fracture in engineering alloys, in “Fracture”, Vol. I, edited by D.M. R. Taplin (University of Waterloo Press, Waterloo, Canada, 1977) pp. 325–362.

    Google Scholar 

  17. C. W. Lau andA. S. Argon, in “Fracture”, Vol. II, edited by D. M. R. Taplin (University of Waterloo Press, Waterloo, Canada 1977) p. 595.

    Google Scholar 

  18. A. G. Evans, J. R. Rice andJ. P. Hirth,J. Amer. Ceram. Soc. 63 (1980) 368.

    CAS  Google Scholar 

  19. A. N. Stroh,Proc. Roy. Soc. A. 223 (1954) 404.

    Google Scholar 

  20. D. McLean, Point defects and the mechanical properties of metals and alloys at high temperatures, in “Vacancies and Other Point Defects in Metals and Alloys”, Monograph and Report Series No. 23 (Institute of Metals, London, 1958) pp. 159–98.

    Google Scholar 

  21. W. M. Ketchum andP. V. Hobbs,Phil. Mag. 19 (1969) 1161.

    Google Scholar 

  22. L. W. Gold, “The failure process in columnargrained ice”. National Research Council of Canada, Division of Building Research, NRC 12637, 1972.

  23. N. K. Sinha, in Proceedings of the Joint Conference on Experimental Mechanics, Soc. Expt. Stress Analysis and Japanese Soc. Mech. Eng., Hawaii, 1982, Part 2, pp. 767–772.

    Google Scholar 

  24. D. J. Goodman, Workshop on Ice Physics, Hokkaido University, Japan (1979) (also private communications).

    Google Scholar 

  25. A. H. Cottrell,Trans. Amer. Inst. Min. Engr. 212 (1958) 192.

    CAS  Google Scholar 

  26. J. A. Williams,Acta Metall. 15 (1967) 1559.

    Article  CAS  Google Scholar 

  27. R. L. Bell andT. G. Langdon,J. Mater. Sci. 2 (1967) 313.

    Article  CAS  Google Scholar 

  28. L. W. Gold, “Physics of Snow and Ice”, edited by H. Oura (Institute of Low Temperature Science, Hokkaido University, Japan, Part 1, 1976) pp. 359–70.

    Google Scholar 

  29. L. W. Gold, PhD thesis, McGill University, Montreal, Canada (1970).

    Google Scholar 

  30. G. M. Bartenev andYu. S. Zuyev, “Strength and Failure of Visco-elastic Materials” (Pergamon Press, Oxford, 1968) p. 164.

    Google Scholar 

  31. E. Smith andJ. T. Barnby,Met. Sci. J. 1 (1967) 56.

    CAS  Google Scholar 

  32. N. K. Sinha,Exp. Mech. 18 (12) (1978) 464–70.

    Article  Google Scholar 

  33. N. K. Sinha,Phil. Mag. 36 (1977) 1385.

    CAS  Google Scholar 

  34. L. W. Gold,Nature 192 (1961) 130.

    Google Scholar 

  35. L. W. Gold,Can. J. Phys. 41 (1963) 1712.

    Google Scholar 

  36. B. R. Lawn, B. J. Hockey andS. M. Wiederhorn,J. Mater. Sci. 15 (1980) 1207.

    Article  CAS  Google Scholar 

  37. N. K. Sinha,J. Cold Region Sci. Technol 8 (1983) pp. 25–33.

    Article  Google Scholar 

  38. N. K. Sinha, in “Mechanics of Structured Media, Part A”, edited by A. P. S. Selvadurai (Elsevier Scientific Publishing Co., Amsterdam, 1981) pp. 419–30.

    Google Scholar 

  39. N. K. Sinha,Exper. Mech. 21 (1981) 209.

    Article  Google Scholar 

  40. P. M. Hazzledine andD. E. Newbury, Role of grain boundaries in superplasticity, in “Grain Boundary Structure and Properties”, edited by G. A. Chadwick and D. A. Smith (Academic Press, London, 1976) pp. 235–64.

    Google Scholar 

  41. P. Hobbs, “Ice Physics” (Clarendon Press, Oxford, 1974).

    Google Scholar 

  42. Yu. K. Zaretsky, B. D. Chumichev andV. I. Solomatin,Eng. Geol. 13 (1979) 299.

    Article  Google Scholar 

  43. J.H. Currier, MSc thesis, Dartmouth College, Hanover, NH, USA (1981).

    Google Scholar 

  44. P. Duval andH. LeGac,J. Glaciol. 25 (1980) 151.

    Google Scholar 

  45. L. W. Gold,ibid. 19 (1977) 197.

    Google Scholar 

  46. J. L. Burdick, Tensile creep-rupture of polycrystalline ice, in Proceedings of the 3rd International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), Institute of Marine Science, University of Alaska, Vol. 1 (1975) pp. 235–246.

    Google Scholar 

  47. D. Carter andB. Michel, Lois et mécanismes de l'apparente fracture fragile de la glace de rivière et du lac. Department of Civil Engineering Laval University, Report S-22 (1971).

  48. I. Hawkes andM. Mellor,J. Glaciol 11 (1972) 103.

    Google Scholar 

  49. J. F. Knott, in “Fracture”, Vol. 1, edited by D. M. R. Taplin (University of Waterloo Press, Waterloo, Canada 1977) pp. 61–92.

    Google Scholar 

  50. C. Gandhi andM. F. Ashby,Acta Metall. 27 (1979) 1565.

    Article  CAS  Google Scholar 

  51. J. Weertman, Creep of ice, in “Physics and Chemistry of Ice”, edited by E. Whalley, S. J. Jones and L. W. Gold (Royal Society of Canada, Ottawa, 1973) pp. 320–37.

    Google Scholar 

  52. R. O. Ramseier, PhD thesis, Laval University, Quebec, Canada (1976).

    Google Scholar 

  53. D. J. Goodman, H. J. Frost andM. F. Ashby,Phil. Mag. A 43 (1981) 665.

    CAS  Google Scholar 

  54. J. W. Glen,Proc. Roy. Soc. London A228 (1955) 519.

    CAS  Google Scholar 

  55. P. Barnes, D. Tabor andJ. C. F. Walker,ibid. A324 (1971) 127.

    Google Scholar 

  56. N. K. Sinha,J. Mater. Sci. 17 (1982) 785.

    Article  CAS  Google Scholar 

  57. S. S. Vagarali andT. G. Langdon,Acta Metall. 29 (1982) 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, N.K. Intercrystalline cracking, grain-boundary sliding, and delayed elasticity at high temperatures. J Mater Sci 19, 359–376 (1984). https://doi.org/10.1007/BF02403222

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02403222

Keywords

Navigation