Skip to main content
Log in

Oxidative stabilization of acrylic fibres

Part 5 The decolouration reaction

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

When acrylic fibres are heat treated for various times at 220 to 250° C, they form dark, insoluble structures of uncertain chemical character which are inert to many strong oxidizing and reducing agents. The heat-treated fibres are, however, rapidly decoloured by warm alkaline hypochlorite solutions. When fibres which have undergone short-time heat treatment are subjected to the hypochlorite, incubation periods are observed before decolouration is noted; and a swollen acrylic network remains after decolouration is complete. The acrylic network is primarily unreacted precursor units save for a small amount of hydrolyzed material. The decoloured reaction is zero order, indicating a reaction at the surface. The rate of the decolouration reaction also increases with increasing duration of the stabilization heat treatment. In fibres which have undergone partial diffusion-controlled stabilization, a dark mantle surrounds a lightly coloured core. The rate of decolouration is unaffected as the decolouration interface passes from the mantle to the core, indicating that the decolouration reaction is not influenced by the occurance of any sequent reactions. The existence of the acrylic residue indicates that the prefatory reactions are continuing in both mantle and core during the course of stabilization.13C-NMR spectra of the acrylic residue show the same triad methine peak areas as those obtained on the untreated fibre; hence the stereoregularity of the nitrile groups has no influence on the rate of nitrile polymerization. The mechanisms of nitrile initiation and of decolouration are discussed. The residue obtained by sulphuric acid etch is different from that obtained by hypochlorite treatment. These results suggest that during the early-to-intermediate stages of stabilization, the fibre consists of interpenetrating networks of original material, i.e., fibre which has undergone only the prefatory reactions and fibre which has undergone the sequent reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Goodhew, A. J. Clarke andJ. E. Bailey,Mater. Sci. Eng. 17 (1975) 3.

    Article  CAS  Google Scholar 

  2. S. B. Warner, L. H. Peebles, Jr andD. R. Uhlmann,J. Mater. Sci. 14 (1979) 556.

    CAS  Google Scholar 

  3. Idem, ibid. 14 (1979) 565.

    CAS  Google Scholar 

  4. Idem, ibid. 14 (1979) 1893.

    Article  CAS  Google Scholar 

  5. Idem, ibid. 14 (1979) 2764.

    Article  CAS  Google Scholar 

  6. J. Johnson, W. Potter, P. Rose andG. Scott,Brit. Polymer J. 4 (1972) 527.

    CAS  Google Scholar 

  7. L. H. Peebles, Jr, “Encyclopedia of Polymer Science and Technology Supplement” Vol. 1, (Wiley, New York, 1976) p. 1.

    Google Scholar 

  8. C. B. Brogna, Sc.D. thesis, 1981.

  9. L. F. Fieser andM. Fieser, “Reagents for Organic Synthesis”, (Wiley, New York, 1967) p. 1084.

    Google Scholar 

  10. F. A. Cotton andG. Wilkinson, “Advanced Inorganic Chemistry”, 3rd edn (Wiley, New York, 1972) p. 477.

    Google Scholar 

  11. M. W. Lister andR. S. Peterson,Can. J. Chem. 40 (1962) 729.

    Article  CAS  Google Scholar 

  12. M. W. Lister,ibid. 34 (1956) 465, 479.

    Article  CAS  Google Scholar 

  13. A. J. Clarke, PhD. thesis, University of Surrey, UK, 1976.

    Google Scholar 

  14. M. M. Coleman andR. J. Petcavich,J. Polymer Sci. Polymer Phys. Ed. 16 (1978) 821.

    Article  CAS  Google Scholar 

  15. R. J. Petcavich, P. C. Painter andM. M. Coleman,ibid. 17 (1979) 165.

    Article  CAS  Google Scholar 

  16. A. J. Clarke andJ. E. Bailey,Nature 243 (1973) 146.

    Article  CAS  Google Scholar 

  17. J. Herms, Mater. Eng. thesis, MIT, 1981.

  18. W. C. Tincher, private communication (1968).

  19. W. Scholtan andH. Marzolph,Makrcmol. Chem. 57 (1962) 52.

    Article  CAS  Google Scholar 

  20. R. M. Silverstein, “Spectrometric Identification of Organic Compounds” (Wiley, New York, 1974) p. 205.

    Google Scholar 

  21. J. Schaefer,Macromolecules 4 (1971) 105.

    Article  CAS  Google Scholar 

  22. K. Ueberreiter, in “Diffusion in Polymers”, edited by J. Crank and G. S. Parks (Academic Press, New York and London, 1968) Ch. 7.

    Google Scholar 

  23. E. Brunner,Z. Phys. Chem. 47 (1904) 56.

    CAS  Google Scholar 

  24. W. Nernst,ibid. 47 (1904) 52.

    CAS  Google Scholar 

  25. T. R. Blanchard, US Patent 2871093 (1959).

  26. “Handbook of Chemistry and Physics”, (Chemical Rubber Co., Cleveland, 1964).

  27. M. Minagawa andT. Iwamatsu,J. Polymer. Sci., Polymer Chem. Ed. 18 (1980) 481.

    Article  CAS  Google Scholar 

  28. H. N. Friedlander, L. H. Peebles, Jr, J. Brandrup andJ. R. Kirby,Macromolecules 1 (1968) 79.

    Article  CAS  Google Scholar 

  29. L. H. Peebles, Jr, unpublished work.

  30. N. A. Kubasova, T. S. Dinh, M. A. Geiderikh andM. V. Shishkina,Vysokomol. Soedin A13 (1971) 162;Polymer Sci. USSR 13 (1971) 184 (English translation).

    Google Scholar 

  31. A. A. Berlin, A. M. Dubinskaya andYu. Sh. Moshkovskii,Vysokomol. Soedin 6 (1964) 1938;Polymer Sci. USSR 6 (1964) 2145 (English translation).

    CAS  Google Scholar 

  32. W. Fester,Textil Rundschau 20 (1965) 1.

    CAS  Google Scholar 

  33. S. H. Crandall, N. C. Dahl andT. L. Lardner, “An Introduction to the Mechanics of Solids”, 2nd Edn (McGraw Hill, New York, 1972).

    Google Scholar 

  34. S. K. Chakrabartty, in “Oxidation in Organic Chemistry”, Part C, edited by W. S. Trahanovsky, (Academic Press, New York, 1978) Ch. 5.

    Google Scholar 

  35. L. H. Peebles, Jr andJ. Brandrup,Makromol. Chem. 98 (1966) 189.

    Article  CAS  Google Scholar 

  36. J. Marsh, “Advanced Organic Chemistry: Reactions, Mechanisms and Structures”, (McGraw Hill, New York, 1977).

    Google Scholar 

  37. W. P. Jencks, “Catalysis in Chemistry and Enzymology”, (McGraw Hill, New York, 1969).

    Google Scholar 

  38. S. R. Chakrabartty andH. D. Kretschmer,J. Chem. Soc., Perkin Trans. I (1974) 222.

    Article  Google Scholar 

  39. D. S. Dinh, M. A. Geiderikh andB. E. Davydov,Izvet. Akad. Nauk, USSR Ser Khim 9 (1970) 1911.

    Google Scholar 

  40. Idem, ibid. 9 (1970) 2033.

    Google Scholar 

  41. M. A. Geiderckh, D. S. Dinh, B. E. Davydov andG. P. Karpacheva,Vysokomol Soedin A15 (1973) 1239;Polymer Sci. USSR 15 (1971) (English translation).

    Google Scholar 

  42. F. L. Cook, Ph.D. thesis, Georgia Institute of Technology, 1975.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S.S., Herms, J., Peebles, L.H. et al. Oxidative stabilization of acrylic fibres. J Mater Sci 16, 1490–1510 (1981). https://doi.org/10.1007/BF02396867

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02396867

Keywords

Navigation