Skip to main content
Log in

Summary

During motionless standing an increased hydrostatic pressure leads to increased transcapillary fluid filtration into the interstitial space of the tissues of the lower extremities. The resulting changes in calf volume were measured using a mercury-in-silastic strain gauge. Following a change in body posture from lying to standing or sitting a two-stage change in calf volume was observed. A fast initial filling of the capacitance vessels was followed by a slow but continuous increase in calf volume during motionless standing and sitting with the legs dependent passively. The mean rates of this slow increase were about 0.17%·min−1 during standing and 0.12%·min−1 during sitting, respectively. During cycle ergometer exercise the plethysmographic recordings were highly influenced by movement artifacts. These artifacts, however, were removed from the recordings by low-pass filtering. As a result the slow volume changes, i.e. changes of the extravascular fluid were selected from the recorded signal. Contrary to the increases during standing and sitting the calf volumes of all 30 subjects decreased during cycle ergometer exercise. The mean decrease during 18 min of cycling (2–20 min) was −1.6% at 50 W work load and −1.9% at 100 W, respectively. This difference was statistically significant (p≤0.01). The factors which may counteract the development of an interstitial edema, even during quiet standing and sitting, are discussed in detail. During cycling, however, three factors are most likely to contribute to the observed reduction in calf volume: (1) The decrease in venous pressure, which in turn reduces the effective filtration pressure. (2) An increased lymph flow, which removes fluid and osmotically active colloid proteins from the interstitial space. (3) An increase in muscle tissue pressure, which counteracts the intravascular pressure during the muscle contraction thus playing an important role as an edema-preventing factor, which has not been considered to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnoldi CC (1965) Venous pressure in the leg of healthy human subjects at rest and during muscular exercise in the nearly erect position. Acta Chir Scand 130:570–583

    CAS  PubMed  Google Scholar 

  • Asmussen E, Christensen EH, Nielsen M (1939a) Pulsfrequenz und Körperstellung. Scand Arch Physiol 81:190–203

    Google Scholar 

  • Asmussen E, Christensen EH, Nielsen M (1939b) Über die Kreislaufinsuffizienz in stehender Stellung bei normalem arteriellen Druck und herabgesetztem Minutenvolumen. Scand Arch Physiol 81:214–224

    Google Scholar 

  • Atzler E, Herbst R (1923) Die Schwankungen des Fußvolumens und deren Beeinflussung. Z Gesamte Exp Med 38:137–152

    Google Scholar 

  • Brace RA (1981) Progress toward resolving the controversy of positive versus negative interstitial fluid pressure. Circ Res 49:281–297

    CAS  PubMed  Google Scholar 

  • Chen HI, Granger HJ, Taylor AE (1976) Interaction of capillary, interstitial, and lymphatic forces in the canine hindpaw. Circ Res 39:245–254

    CAS  PubMed  Google Scholar 

  • Ensink FBM, Carstens B, Geppert V, Gersing E, Hellige G (1981) The reliability of venous capacity and blood flow detection by plethysmography. In: Jagenau AHM (ed) Noninvasive methods on cardiovascular hemodynamics. Elsevier, Amsterdam, pp 169–183

    Google Scholar 

  • Fadnes HO, Reed RK, Aukland K (1978) Mechanisms regulating interstitial fluid volume. Lymphology 11:165–169

    CAS  PubMed  Google Scholar 

  • Gauer OH, Thron HL (1965) Postural changes in the circulation. In: Hamilton WS (ed) Handbook of Physiology, sect. 2: Circulation vol. III, p 2430

  • Gutmann J, Krötz J (1972) Zur Genauigkeit der Dehnungsmeßstreifenmethode bei der venösen Kapazitätsmessung. Folia Angiol 10:103–107

    Google Scholar 

  • Guyton AC (1976) Textbook of medical physiology. Chapt. 18. Saunders, Philadelphia, p 246

    Google Scholar 

  • Guyton AC, Granger HJ, Taylor AE (1971) Interstitial fluid pressure. Physiol Rev 51:527–563

    PubMed  CAS  Google Scholar 

  • Henriksen O, Sejrsen P (1977) Local reflex in microcirculation in human skeletal muscle. Acta Physiol Scand 99:19–26

    CAS  PubMed  Google Scholar 

  • Henriksen O, Sejrsen P, Paaske WP, Eickhoff JH (1983) Effect of chronic sympathetic denervation upon the transcapillary filtration rate induced by venous stasis. Acta Physiol Scand 117:171–176

    CAS  PubMed  Google Scholar 

  • Henry JP, Gauer OH (1950) The influence on temperature upon venous pressure in the foot. J Clin Invest 29:855–861

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt G (1960) Die Durchblutung der menschlichen Wadenmuskulatur bei orthostatischer Belastung. Pflügers Arch 272:6–7

    Article  CAS  Google Scholar 

  • Hörig C (1976) Impedanzplethysmographische Untersuchungen von Volumenänderungen an der unteren Extremität bei Lagewechsel. Dissertation, Medical Faculty, Kiel University, Kiel

    Google Scholar 

  • Jacobson S, Kjellmer J (1963) Relation between lymph flow and accumulation of capillary filtrate in exercising muscle. Acta Physiol Scand 59 [Suppl 213]:66

    Google Scholar 

  • Jacobson S, Kjellmer J (1964a) Flow and protein content of lymph in resting and exercising skeletal muscle. Acta Physiol Scand 60:278–285

    Google Scholar 

  • Jacobson S, Kjellmer J (1964b) Accumulation of fluid in exercising skeletal muscle. Acta Physiol Scand 60:286–292

    Google Scholar 

  • Kirkebø A, Wisnes A (1982) Regional tissue fluid pressure in rat calf muscle during sustained contraction or stretch. Acta Physiol Scand 114:551–556

    PubMed  Google Scholar 

  • Kirsch K, Merke J, Hinghofer-Szalkay H (1980) Fluid volume distribution within superficial shell tissues along body axis during changes of body posture in man. Pflügers Arch 383:195–201

    Article  CAS  PubMed  Google Scholar 

  • Krug H, Schlicher L (1960) Die Dynamik des venösen Rückstromes. Thieme, Leipzig

    Google Scholar 

  • Looke H (1936) Über die Volumenänderungen der unteren Extremitäten unter verschiedenen Bedingungen. Arbeitsphysiologie 9:496–504

    Article  Google Scholar 

  • Ludbrook J (1966) The musculovenous pumps of the human lower limb. Am Heart J 71:635–641

    Article  CAS  PubMed  Google Scholar 

  • Ludbrook J, Loughlin J (1964) Regulation of volume in postarteriolar vessels of the lower limbs. Am Heart J 67:493–507

    Article  CAS  PubMed  Google Scholar 

  • Lundvall J (1972) Tissue hyperosmolality as a mediator of vasodilation and transcapillary fluid flux in exercising skeletal muscle. Acta Physiol Scand 86 [Suppl 379]:1–42

    Google Scholar 

  • Lundvall J, Mellander S, Westling H, White T (1972) Fluid transfer between blood and tissues during exercise. Acta Physiol Scand 85:258–269

    Article  CAS  PubMed  Google Scholar 

  • Mellander S, Öberg B, Odelram H (1964) Vascular adjustments to increased transmural pressure in cat and man with special reference to shifts in capillary fluid transfer. Acta Physiol Scand 61:34–48

    CAS  PubMed  Google Scholar 

  • Nicolaysen G, Noddeland H, Aukland K (1980) Plasma colloid osmotic pressure on venous blood from the foot of man in the sitting position. Acta Physiol Scand 109:5AC4

    Google Scholar 

  • Noddeland H, Aukland K, Nicolaysen G (1981) Plasma colloid osmotic pressure in venous blood from the human foot in orthostasis. Acta Physiol Scand 113:447–454

    CAS  PubMed  Google Scholar 

  • Olszewski W, Engeset A, Jaeger PM, Sokolowski J, Theodorsen L (1977) Flow and composition of leg lymph in normal men during venous stasis, muscular activity and local hyperthermia. Acta Physiol Scand 99:149–155

    CAS  PubMed  Google Scholar 

  • Pollack AA, Wood EH (1949) Venous pressure in the saphenous vein at the ankle in man during exercise and changes in posture. J Appl Physiol 1:649–662

    PubMed  CAS  Google Scholar 

  • Reeves JT, Grover RF, Blunt SG, Filley GF (1961) Cardiac output response to standing and treadmill walking. J Appl Physiol 16:283–288

    CAS  PubMed  Google Scholar 

  • Rieckert H (1970) Die Hämodynamik des venösen Rückflusses aus der unteren Extremität. Arch Kreislaufforsch 62:293–318

    Article  CAS  PubMed  Google Scholar 

  • Rieckert H (1978) Die Druckverhältnisse im Venensystem des Fußes in Ruhe und bei muskulärer Aktivität. In: May R, Kriessmann A (eds) Periphere Venendruckmessung. Thieme, Stuttgart

    Google Scholar 

  • Rushmer RF (1961) Cardiovascular dynamics. Effects of posture, 2nd edn. Saunders, Philadelphia, p 171

    Google Scholar 

  • Schnizer W, Klatt J, Baeker H, Rieckert H (1978) Vergleich von szintigraphischen und plethysmographischen Messungen zur Bestimmung des kapillären Filtrationskoeffizienten in der menschlichen Extremität. Basic Res Cardiol 73:77–84

    Article  CAS  PubMed  Google Scholar 

  • Schnizer W, Hinneberg H, Moser H, Küper K (1979) Intraand extravascular volume changes in the human forearm after static hand grip exercise. Eur J Appl Physiol 41:131–140

    Article  CAS  Google Scholar 

  • Sejrsen P, Henriksen O, Paaske WP (1981a) Effect of orthostatic blood pressure changes upon capillary filtration-absorption rate in the human calf. Acta Physiol Scand 111:287–291

    CAS  PubMed  Google Scholar 

  • Sejrsen P, Henriksen O, Paaske WP, Nielsen SL (1981b) Duration of increase in vascular volume during venous stasis. Acta Physiol Scand 111:293–298

    CAS  PubMed  Google Scholar 

  • Stick C (1981) Zur Problematik der Messung filtrationsbedingter Volumenänderungen der Extremitäten mit der Impedanzplethysmographie. Eur J Appl Physiol 47:405–418

    Article  CAS  Google Scholar 

  • Stick C, Stöfen P, Witzleb E (1985a) On physiological edema in man's lower extremity. Eur J Appl Physiol 54:442–449

    Article  CAS  Google Scholar 

  • Stick C, Jaeger H, Witzleb E (1985b) Eine Methode zur Artefaktunterdrückung bei der Messung des peripheren Venendrucks während Muskelarbeit. VASA 14:239–243

    CAS  PubMed  Google Scholar 

  • Taylor A, Gibson H, Granger HJ, Guyton AC (1973) The interaction between intracapillary and tissue forces in the overall regulation of interstitial fluid volume. Lymphology 6:192–208

    CAS  PubMed  Google Scholar 

  • Taylor AE (1981) Capillary fluid filtration, Starling forces and lymph flow. Circ Res 49:557–575

    CAS  PubMed  Google Scholar 

  • Waterfield RL (1931) The effect of posture on the volume of the leg. J Physiol (Lond) 72:121–131

    CAS  Google Scholar 

  • White JC, Field ME, Drinker CK (1933) On the protein content and normal flow of lymph from the foot of the dog. Am J Physiol 103:34–44

    CAS  Google Scholar 

  • Whitney RJ (1953) The measurement of volume changes in human limbs. J Physiol 121:1–27

    CAS  PubMed  Google Scholar 

  • Wiig H, Reed RK, Aukland K (1987) Measurement of interstitial fluid pressure in dogs: evaluation of methods. Am J Physiol 253 (Heart Circ Physiol 22):H283-H290

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stick, C., Grau, H. & Witzleb, E. On the edema-preventing effect of the calf muscle pump. Europ. J. Appl. Physiol. 59, 39–47 (1989). https://doi.org/10.1007/BF02396578

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02396578

Key words

Navigation