Skip to main content
Log in

Bottom dynamics in lakes

  • Part One: Sediment Dynamics and Material Distributions in Fluvial and Lacustrine Environments
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A proper understanding of the bottom dynamic conditions (erosion, transportation, accumulation) in lakes is essential in most sedimentological contexts. Fine cohesive materials generally dominate the open water areas, whereas coarser deposits (sand, gravel) dominate shallow regions where erosion and transportation of fine materials prevail. At present, there is no physical model available which describes the linkage between the energy content of the water-mass and the capacity for sediment entrainment in open water areas. Water-mass energy depends on, e.g. wind direction, duration, velocity, fetch, and the presence of a thermocline. Entrainment depends on, e.g. density, compaction, water and organic content of the sediments and the number and type of bottom fauna.

Four different methods are used to determine bottom dynamics, two aresite typical and two arelake typical.Site andlake typical methods each include one method based on collected field data and one based on theoretical data. One method, the cone apparatus, is presented for the first time. It consists of two cones, one of which has a narrow angle and the other a wide angle, which are zero adjusted at the sediment surface before being released to penetrate the sediments. The differential cone penetration, refered to as the penetration ratio, is used to indicate the degree of surficial sediment compaction. This simple, inexpensive instrument provides quantitative data on physical sediment characteristics which may be related to bottom dynamic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axelsson, V., 1967. The Laitaure delta. A study of deltaic morphology and processes. Geogr. Ann. 49: 1–127.

    Google Scholar 

  • Axelsson, V. & Håkanson, L., 1975. The relation between mercury distribution and sedimentological environment in Lake Ekoln. Part 4. Deposition of sediment and mercury in 1971 and 1972. UNGI Rapport 35, Univ. of Uppsala. 42 pp.

  • Bagnold, R. A., 1954. The Physics of Blown Sand and Desert Dunes. Methuen, London. 165 pp.

    Google Scholar 

  • Beach Erosion Board, 1972. Waves in inland reservoirs. Techn. Mem 132, Beach Erosion Corps of Engineers, Washington, D.C. 125 pp.

    Google Scholar 

  • Blomqvist, S., 1981. Fysikalisk bottendynamik. Underlag för råd och riktlinjer av muddring och muddertippning. Preprint in Swedish, Nat. Swe. Env. Prot. Bd., Stockholm. 11 pp.

  • Fischer, H. B., List, E. J., Hoh, R. C. Y., Imberger, J. & Brooks, N. H., 1979. Mixing in inland and coastal waters. Academic Press, New York. 483 pp.

    Google Scholar 

  • Fisher, J. S., Pickral, J. & Odum, W. E., 1979. Organic detritus particles: initiation of motion criteria. Limnol. Oceanogr. 24: 529–532.

    Google Scholar 

  • Förstner, U. & Wittmann, G. T. W., 1979. Metal Pollution in the Aquatic Environment. Springer-Verlag, Berlin. 486 pp.

    Google Scholar 

  • Gilbert, R., 1975. Sedimentation in Lillooet lake, British Columbia. Can J. Earth Sci. 12: 1697–1711.

    Google Scholar 

  • Gilbert, R. & Shaw, J., 1980. Sedimentation in proglacial Sunwapta lake, Alberta. Can. J. Earth Sci. 18: 81–93.

    Google Scholar 

  • Håkanson, L., 1975. Mercury in Lake Vänern — present status and prognosis. SNV PM 563, Nat. Swe. Env. Prot. Bd, Uppsala. 121 pp.

    Google Scholar 

  • Håkanson, L., 1977a. The influence of wind, fetch, and water depth on the distribution of sediments in Lake Vänern, Sweden. Can. J. Earth Sci. 14: 397–412.

    Google Scholar 

  • Håkanson, L., 1977b. An empirical model for physical parameters of recent sedimentary deposits of Lake Ekoln and Lake Vänern. Vatten 3: 266–239.

    Google Scholar 

  • Håkanson, L., 1981a. Determination of characteristic values for physical and chemical lake sediment parameters (Accepted by Water Resources Research).

  • Håkanson, L., 1981b. On lake bottom dynamics — the energy-topography factor. Can. J. Earth Sci. 18: 899–909.

    Google Scholar 

  • Håkanson, L., 1981c. Lake sediments in aquatic pollution control programs: principles, processes and practical examples. SNV PM 1398, Nat. Swe. Env. Prot. Bd, Uppsala. 242 pp.

    Google Scholar 

  • Håkanson, L., 1981d. A Manual of Lake Morphometry. Springer-Verlag, Berlin. 78 pp.

    Google Scholar 

  • Hamblin, P. F. & Carmack, E. C., 1978. River-induced currents in a fjord lake. J. geophys. Res. 83: 885–899.

    Google Scholar 

  • Hansebo, S., 1957. A new approach to the determination of the shear strength of clays by the fallcone test. R. Swe. Geol. Inst. Proc. Nr. 14, Stockholm. 47 pp.

  • Hjulström, F., 1935. Studies of the morphological activity of rivers as illustrated by the River Fyris. Bull. Geol. Inst. Uppsala 25: 221–527.

    Google Scholar 

  • Johnson, T. C.,1980. Sediment redistribution by waves in lakes, reservoirs and embayments. In: Stefan, H. (Ed.) Proceedings of Symposium on Surface-Water Impoundments. American Society Civil Engineering (preprint).

  • Kemp, A. L. W., Anderson, T. W., Thomas, R. L. & Mudrochova, P., 1974. Sedimentation rates and recent sediment history of Lakes Ontario, Erie and Huron. J. Sed. Pet. 44: 207–218.

    CAS  Google Scholar 

  • Kemp, A. L. W., MacInnis, G. A. & Harper, N. S., 1977. Sedimentation rates and a revised sediment budget for Lake Erie. Int. Ass. Great Lakes Res. 3: 221–233.

    Google Scholar 

  • Lastein, E., 1976. Recent sedimentation and resuspension of organic matter in eutrophic Lake Esrom, Denmark. Oikos 27: 44–49.

    Google Scholar 

  • Ludlam, S. D., 1974. Fayetteville Green Lake, New York. 6. The role of turbidity currents in lake sedimentation. Limnol. Oceanogr. 19: 656–664.

    Google Scholar 

  • Lüthi, S., 1980. Some new aspects of two-dimensional turbidity currents. Sedimentology 28: 97–105.

    Google Scholar 

  • McCall, P. L., 1979. The effects of deposit feeding oligochaetes on particle size and settling velocity of Lake Erie sediments. J. Sed. Pet. 49: 813–818.

    Google Scholar 

  • McCall, P. L. & Fisher, J. B., 1980. Effects of tubificid oligochaetes on physical and chemical properties of Lake Erie sediments. In: Brinkhurst, R. O. & Cook, D. G. (Eds.) Aquatic Oligochaete Biology, pp. 253–317. Plenum Press, New York.

    Google Scholar 

  • Moeller, R. E. & Likens, G. E., 1978. Seston sedimentation in Mirror Lake, New Hampshire, and its relationship to long-term sediment accumulation. Verh. int. Verein. Limnol. 20: 525–530.

    Google Scholar 

  • Norrman, J. O., 1964. Lake Vättern. Investigations on shore and bottom morphology. Geogr. Ann. 46: 1–238.

    Google Scholar 

  • Nydegger, P., 1976. Strömungen in Seen: Untersuchungen in situ und an nachgebildeten Modellseen. Beitr. Geol. Schweiz. Kl. Mitt. 66: 141–177.

    Google Scholar 

  • Pharo, C. H. & Carmack, E. C., 1979. Sedimentation processes in a short residence-time intermontane lake, Kamloops Lake, British Columbia. Sedimentology 26: 523–541.

    Google Scholar 

  • Sly, P. G., 1978. Sedimentary processes in lakes. In: Lerman, A. (Ed.) Lakes-Chemistry, Geology, Physics, pp. 65–89. Springer-Verlag, New York.

    Google Scholar 

  • Sturm, M. & Matter, A., 1978. Turbidities and varves in Lake Briensz (Switzerland): deposition of elastic detritus by density currents. Spec. Publ. Int. Ass. Sediment. 2: 147–168.

    Google Scholar 

  • Sundborg, å., 1956. The River Klarälven. A study of fluvical processes. Geogr. Ann. 38: 125–316.

    Google Scholar 

  • Terwindt, J. H. J., 1977. Deposition, transportation and erosion of mud. In: Golterman, H. L. (Ed.) Interactions between Sediments and Fresh Water, pp. 19–24. Dr. W. Junk, The Hague.

    Google Scholar 

  • Tutin, W., 1955. Preliminary observations on a year's cycle of sedimentation in Windermere, England. Mem. 1st. Ital. Idrobiol. Suppl. 8: 467–484.

    Google Scholar 

  • Welch, P. S., 1948. Limnological Methods. The Blakiston Co., Philadelphia. 381 pp.

    Google Scholar 

  • Wright, R. F. & Nydegger, P., 1980. Sedimentation of detrital particulate matter in lakes: influence of currents produced by inflowing rivers. Water Resources Res. 16: 597–601.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Håkanson, L. Bottom dynamics in lakes. Hydrobiologia 91, 9–22 (1982). https://doi.org/10.1007/BF02391918

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02391918

Keywords

Navigation