Skip to main content
Log in

Newton's constant of gravitation and verified numerical quadrature

Гравитационная постоянная Ньютона и верифицрованная численная квадратура

  • Published:
Reliable Computing

Abstract

In this paper we describe the use of interval arithmetic in an experiment for determiningG, Newton's constant of gravitation. Using an interval version of Gaussian quadrature, we bound the effects of numerical errors and of several tolerances in the physical experiment. This allowed to identify “critical” tolerances which must be reduced in order to obtainG with the desired accuracy.

Abstract

Описывается испольэование интервальной арифметики в эксиерименте но определеник гравитапионной постоянной НяютонаG. С помощью интервального варианта квадратуры Гаусса определяются границы численных погрешностей и некоторых допусков в физическом эксперименте. Таким образом, оказалось возможным найти критические допуски, величина которых должна быть уменыцена для достижения требуемой точностнG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen, E. R. and Taylor, B. N.The 1986 CODATA recommended values of the fundamental physical constants. Journal of Research of the National Bureau of Standard92 (1987), pp. 85–95.

    Google Scholar 

  2. Fitzgerald, M. P., Armstrong, T. R., Hurst, R. B., and Corney, A. C.A method to measure Newton's gravitational constant. International Journal of Pure and Applied Metrology31 (1994), pp. 301–317.

    Google Scholar 

  3. Freeman, R. D.Algorithm 32: multint. Comm. ACM4 (1961), p. 106.

    Article  Google Scholar 

  4. Gillies, G. T.The Newtonian gravitational constant: an index of measurements. International Journal of Pure and Applied Metrology24 (1987), Supplement, pp. 1–56.

    Google Scholar 

  5. Holzmann, O.Untersuchungen zur Integration bei der Messung der Newtonschen Gravitationskonstanten. M. Sc. thesis, in preparation.

  6. Klatte, R., Kulisch, U., Neaga, M., Ratz, D., and Ullrich, Ch.Pascal-XSC—language reference with examples. Springer, New York, 1992.

    Google Scholar 

  7. Lohner, R.Verified computing and programs in Pascal-XSC. Habilitationsschrift, Universität Karsruhe, 1994.

  8. McKeeman, W. M.Algorithm 146: multiple integration. Comm. ACM5 (1962), pp. 604–605.

    Article  Google Scholar 

  9. Michaelis, W., Haars, H., and Augustin, R.A new precise determination of Newton's gravitational constant. Submitted to International Journal of Pure and Applied Metrology.

  10. Storck, U.Verified calculation of the nodes and weights for Gaussian quadrature formulas. Interval Computations 4 (1993), pp. 114–124.

    MATH  MathSciNet  Google Scholar 

  11. Storck, U.Verifizierte Berechnung mehrfach geschachtelter singulärer Integrale der Gaskinetik. Ph. D. thesis, Universität Karlsruhe, 1995.

  12. Stroud, A. H.Approximative calculation of multiple integrals. Prentice-Hall, New York, 1971.

    Google Scholar 

  13. Walesch, H.Test des Newtonschen Gravitatisogesetzes und die präzise Bestimmung von G. Ph. D. thesis WUB-DIS 95-4, Bergische Universität GH Wuppertal, 1995.

  14. Walesch, H., Meyer, H., Piel, H., and Schurr, J.The gravitational force at mass separations from 0.2 to 2.1 m and the precise measurement of G. IEEE Trans. Instr. Measurem.44 (1995), pp. 491–493.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

© O. Holzmann, B. Lang, H. Schütt, 1996

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holzmann, O., Lang, B. & Schütt, H. Newton's constant of gravitation and verified numerical quadrature. Reliable Comput 2, 229–239 (1996). https://doi.org/10.1007/BF02391697

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02391697

Keywords

Navigation