Skip to main content
Log in

Boundaries and random walks on finitely generated infinite groups

  • Published:
Arkiv för Matematik

Abstract

We prove that almost every path of a random walk on a finitely generated nonamenable group converges in the compactification of the group introduced by W. J. Floyd. In fact, we consider the more general setting of ergodic cocycles of some semigroup of one-Lipschitz maps of a complete metric space with a boundary constructed following Gromov. We obtain in addition that when the Floyd boundary of a finitely generated group is non-trivial, then it is in fact maximal in the sense that it can be identified with the Poisson boundary of the group with reasonable measures. The proof relies on works of Kaimanovich together with visibility properties of Floyd boundaries. Furthermore, we discuss mean proximality of ϖΓ and a conjecture of McMullen. Lastly, related statements about the convergence of certain sequences of points, for example quasigeodesic rays or orbits of one-Lipschitz maps, are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [A]Ancona, A., Théorie du potentiel sur les graphes et les variétés, inÉcole d’été de Probabilités de Saint-Flour XVIII, 1988 (Hennequin, P. L., ed.), Lecture Notes in Math.1427, pp. 1–112. Springer-Verlag, Berlin-Heidelberg, 1990.

    Google Scholar 

  • [BHK]Bonk, M., Heinonen, J. andKoskela, P., Uniformizing Gromov hyperbolic space,Astérisque 270 (2001), 1–99.

    Google Scholar 

  • [CS]Cartwright, D. I. andSoardi, P. M., Convergence to ends for random walks on the automorphism group of a tree,Proc. Amer. Math. Soc. 107 (1989), 817–823.

    MathSciNet  Google Scholar 

  • [CDP]Coornaert, M., Delzant, T. andPapadopoulos, A.,Géométrie et théorie des groupes. Les groupes hyperboliques de Gromov. Lecture Notes in Math.1441, Springer-Verlag, Berlin-Heidelberg, 1990.

    Google Scholar 

  • [E]Epstein, D. B. A., Cannon, J. W., Holt, D. F., Levy, S. V. F., Paterson, M. S. andThurston, W. P.,Word Processing in Groups, Jones and Bartlett, Boston, Mass., 1992.

    Google Scholar 

  • [F1]Floyd, W. J., Group completions and limit sets of Kleinian groups,Invent. Math. 57 (1980), 205–218.

    Article  MATH  MathSciNet  Google Scholar 

  • [F2]Floyd, W. J., Group completions and Furstenberg boundaries: rank one,Duke Math. J. 51 (1984), 1017–1020.

    Article  MATH  MathSciNet  Google Scholar 

  • [Ful]Furstenberg, H., Random walks and discrete subgroups of Lie groups, inAdvances in Probability and Related Topics, vol.1 (Ney, P., ed.), pp. 1–63, Marcel Dekker, New York, 1971.

    Google Scholar 

  • [Fu2]Furstenberg, H., Boundary theory and stochastic processes on homogeneous spaces, inHarmonic Analysis on Homogeneous Spaces (Williamstown, Mass., 1972) (Moore, C. C., ed.), Proc. Symp. Pure Math.26, pp. 193–229, Amer. Math. Soc., Providence, R. I., 1973.

    Google Scholar 

  • [G]Gromov, M., Hyperbolic groups, inEssays in Group Theory (Gersten, S., ed.), Math. Sci. Res. Inst. Publ.8, pp. 75–263, Springer-Verlag, New York, 1987.

    Google Scholar 

  • [Gu]Guivarc’h, Y., Sur la loi des grands nombres et le rayon spectral d’une marche aléatoire,Astérisque 74 (1980), 47–98.

    MathSciNet  Google Scholar 

  • [Ka1]Kaimanovich, V. A., The Poisson boundary of hyperbolic groups,C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), 59–64.

    MATH  MathSciNet  Google Scholar 

  • [Ka2]Kaimanovich, V. A., The Poisson formula for groups with hyperbolic properties,Ann. of Math. 152 (2000), 659–692.

    MATH  MathSciNet  Google Scholar 

  • [K1]Karlsson, A., Non-expanding maps and Busemann functions,Ergodic Theory Dynam. Systems 21 (2001), 1447–1457.

    Article  MATH  MathSciNet  Google Scholar 

  • [K2]Karlsson, A., Free subgroups of groups with non-trivial Floyd boundary, to appear inComm. Algebra.

  • [KM]Karlsson, A. andMargulis, G. A., A multiplicative ergodic theorem and nonpositively curved spaces,Comm. Math. Phys. 208 (1999), 107–123.

    Article  MathSciNet  Google Scholar 

  • [M]Margulis, G. A.,Discrete Subgroups of Semisimple Lie Groups, Springer-Verlag, New York, 1991.

    Google Scholar 

  • [Mc]McMullen, C. T., Local connectivity, Kleinian groups and geodesics on the blowup of the torus,Invent. Math. 146 (2001), 35–91.

    Article  MATH  MathSciNet  Google Scholar 

  • [S]Stallings, J.,Group Theory and Three-Dimensional Manifolds, Yale Univ. Press, New Haven-London, 1971.

    Google Scholar 

  • [St]Stark, C. W., Group completions and orbifolds of variable negative curvature,Proc. Amer. Math. Soc. 114 (1992), 191–194.

    MATH  MathSciNet  Google Scholar 

  • [T1]Tukia, P., A remark on a paper by Floyd, inHolomorphic Functions and Moduli, Vol. II (Berkeley, Calif., 1986) (Drasin, D., Earle, C. J., Gehring, F. W., Kra, I. and Marden, A., eds.), Math. Sci. Res. Inst. Publ.11, pp. 165–172, Springer-Verlag, New York, 1988.

    Google Scholar 

  • [T2]Tukia, P., The limit map of a homomorphism of discrete Möbius groups,Inst. Hautes Études Sci. Publ. Math. 82 (1995), 97–132.

    MATH  MathSciNet  Google Scholar 

  • [W]Woess, W., Boundaries of random walks on graphs and groups with infinitely many ends,Israel J. Math. 68 (1989), 271–301.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlsson, A. Boundaries and random walks on finitely generated infinite groups. Ark. Mat. 41, 295–306 (2003). https://doi.org/10.1007/BF02390817

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02390817

Keywords

Navigation