Skip to main content
Log in

Isolation of cardiomyocytes from human myocardium for primary cell culturing

  • Published:
Journal of tissue culture methods

Summary

Maximizing the yield of viable cardiomyocytes suitable for primary cultures is important in the processing of small human myocardial biopsies. The purpose of this study was to establish the conditions of collagenase and trypsin digestion of ventricular myocardium to obtain optimal yields of viable cardiomyocytes. Our results showed that calcium in the digestion solution was toxic to the cells. EDTA chelated calcium in the digestion solution and inhibited collagenase activity. Trypsin increased collagenase activity, especially in the presence of EDTA. The combination of trypsin and collagenase with or without EDTA was more effective than either enzyme alone in increasing cardiomyocyte yield and viability and in minimizing cardiomyocyte damage. By repeating the digestion of a 5 to 20-mg myocardial biopsy, sufficient numbers of viable cardiomyocytes can be obtained for primary culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auerbach, R.; Grobstein, C. Inductive interaction of embryonic tissues after dissociation and reaggregation. Exp. Cell Res. 15:384–397; 1958.

    Article  CAS  PubMed  Google Scholar 

  2. Ausubel, F. M.; Brent, R.; Kingston, R. E., et al. Current protocols in molecular biology: Volume II analysis of protein. John Wiley & Sons, Inc. 1989:10.0.1-10.8.6.

  3. Belardinelli, L.; Isenberg, G. Actions of adenosine and isoproterenol on isolated mammalian ventricular myocytes. Circ. Res. 53:287–297; 1983.

    CAS  PubMed  Google Scholar 

  4. Cavanaugh, M. W. Growth of chick heart cells in monolayer culture. J. Exp. Zool. 128:573–581; 1985.

    Google Scholar 

  5. Claycomb, W. C.; Palazzo, M. C. Culture of terminally differentiated adult cardiac muscle cells: a light and scanning electron microscope study. Dev. Biol. 80:466–482; 1980.

    CAS  PubMed  Google Scholar 

  6. Eid, H.; Larson, D. M.; Springhorn, J. P., et al. Role of epicardial mesothelial cells in the modification of phenotype and function of adult rat ventricular myocytes in primary coculture. Circ. Res. 71:40–50; 1992.

    CAS  PubMed  Google Scholar 

  7. Eppenberger-Eberhardt, M.; Flamme, I.; Kurer, V., et al. Reexpression of alpha-smooth muscle actin isoform in cultured adult rat cardiomyocytes. Dev. Biol. 139:269–278; 1990.

    CAS  PubMed  Google Scholar 

  8. Farmer, B. B.; Mancina, M.; Williams, E. S., et al. Isolation of calcium tolerant myocytes from adult rat hearts: review of the literature and description of a method. Life Sci. 33:1–18; 1983.

    Article  CAS  PubMed  Google Scholar 

  9. Grobstein, C.; Cohen, J. Collagens: effect on the morphogenesis of embryonic salivary epithelium. Science 150:626–628; 1965.

    CAS  PubMed  Google Scholar 

  10. Harper, E. Collagenase. Ann. Rev. Biochem. 49:1063–1078; 1980.

    CAS  PubMed  Google Scholar 

  11. Hinz, R. W.; Syverton, J. T. Mammalian cell cultures for study of influenza virus. I. Preparation of monolayer cultures with collagenase. Proc. Soc. Exp. Biol. Med. 101:19–25; 1959.

    CAS  PubMed  Google Scholar 

  12. Horackova, M. Excitation coupling in isolated adult ventricular myocytes from the rat, dog, and rabbit: effects of various inotropic interventions in the presence of ryanodine. Can. J. Physiol. Pharmacol. 64:1473–1483; 1986.

    CAS  PubMed  Google Scholar 

  13. Kohtz, D. S.; Dische, N. R.; Inagami, T., et al. Growth and partial differentiation of presumptive human cardiac myoblasts in culture. J. Cell Biol. 108:1067–1078; 1989.

    Article  CAS  PubMed  Google Scholar 

  14. Lasfargues, E. Y. Cultivation and behavior in vitro of the normal mammary epithelium of the adult mouse. Anat. Rec. 127:117–121; 1957.

    Article  CAS  PubMed  Google Scholar 

  15. Li, R-K.; Weisel, R. D.; Williams, W. G., et al. A method of culturing cardiomyocytes from human pediatric ventricular myocardium. J. Tissue Cult. Methods 14:93–100; 1992.

    CAS  Google Scholar 

  16. Magee, W. E.; Sheek, M. P.; Sagik, B. P. Methods of harvesting mammalian cells grown in tissue culture. Proc. Soc. Exp. Biol. Med. 94:390–399; 1958.

    Google Scholar 

  17. Mazet, F.; Wittenberg, B. A.; Spray, D. C. Fate of intercellular junctions in isolated adult rat cardiac cells. Circ. Res. 56:195–204; 1985.

    CAS  PubMed  Google Scholar 

  18. Nag, A. C.; Cheng, M.; Fischman, D. A., et al. Long-term cell culture of adult mammalian cardiac myocytes: electron microscopic and immunofluorescent analyses of myofibrillar structure. J. Mol. Cell. Cardiol. 15:301–317; 1983.

    Article  CAS  PubMed  Google Scholar 

  19. Nag, A. C. Embryonic chick heart muscle cells. In: Piper, H. M., ed. Cell culture techniques in heart and vessel research. New York: Springer-Verlag; 1990:1–19.

    Google Scholar 

  20. Piper, H. M. Cell culture techniques in heart and vessel research. In: Piper, H. M., ed., New York: Springer-Verlag; 1990:1–116.

    Google Scholar 

  21. Piper, H. M.; Jacobson, S. L.; Schwartz, P. Determinants of cardiomyocyte development in long-term primary culture. J. Mol. Cell. Cardiol. 20:825–835; 1988.

    CAS  PubMed  Google Scholar 

  22. Pretlow, T. G.; Pretlow, T. B. Cell separation methods and selected application, vol. 3. New York: Academic Press; 1984:265–283.

    Google Scholar 

  23. Rabkin, S. W.; Sunga, P. The effect of doxorubicin (adriamycin) on cytoplasmic microtubule system in cardiac cells. J. Mol. Cell. Cardiol. 19:1073–1083; 1987.

    CAS  PubMed  Google Scholar 

  24. Simpson, P.; Savion, S. Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells. Cross-striations, ultrastructure, and chronotropic response to isoproterenol. Cir. Res. 50:101–116; 1982.

    CAS  Google Scholar 

  25. Steinber, M. S. “Exp. Cell Res.”: its nature, origin and function in cell aggregation. 30:257–279; 1963.

    Google Scholar 

  26. Waymouth, C. To disaggregate or not to disaggregate? Injury and cell disaggregation transient or permanent? In Vitro 10:97–111; 1974.

    CAS  PubMed  Google Scholar 

  27. Weiss, L. The effects of trypsinization on the size, viability and dry mass of sarcoma 37 cells. Exp. Cell Res. 14:40–50; 1958.

    Article  Google Scholar 

  28. Wittnich, C.; Peniston, C.; Chiu, R. C. J., et al. Myocardial tolerance to global ischemia: importance of age and species of animal. Physiologist 29:164–172; 1986.

    Google Scholar 

  29. Wittnich, C.; Peniston, C.; Ianuzzo, D., et al. Relative vulnerability of neonatal and adult hearts to ischemic injury. Circulation (suppl V) 76:156–160; 1987.

    Google Scholar 

  30. Worthington Biochemical Corporation. Worthington enzyme manual: enzymes and related biochemicals: trypsinogen-trypsin. Freehold, NJ:1988.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, RK., Tumiati, L.C., Weisel, R.D. et al. Isolation of cardiomyocytes from human myocardium for primary cell culturing. Journal of Tissue Culture Methods 15, 147–154 (1993). https://doi.org/10.1007/BF02388268

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02388268

Key words

Navigation