Skip to main content
Log in

Immunohistochemical localization of rhodanese

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

The role of rhodanese in the detoxication of acute cyanide exposure is controversial. The debate involves questions of the availability of rhodanese to cyanide in the peripheral circulation. Blood-borne cyanide will distribute to the brain and may induce lesions or even death.

The present study addresses the dispute by determining the distribution of rhodanese in tissues considered to have the highest rhodanese activity and thought to serve as major detoxication sites. The results indicate that rhodanese levels are highest in (1) hepatocytes that are in close proximity to the blood supply of the liver (2) epithelial cells surrounding the bronchioles (a major entry route for gaseous cyanide) and (3) proximal tubule cells of the kidney (serving to facilitate cyanide detoxication and elimination as thiocyanate). Rhodanese activity in the brain is low compared with liver and kidney (Mimoriet al., 1984; Drawbaugh & Marrs, 1987); the brain is not considered to be a major site of cyanide detoxication. The brain, however, is the target for cyanide toxicity. In this study our goal was also to differentiate the distribution of rhodanese in an area of the brain. We found that the enzyme level is highest in fibrous astrocytes of the white matter. Cyanide-induced brain lesions may thus occur in areas of the brain lacking sufficient sites for detoxication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, A., Rutter, D. A. &Sargeant, K. (1974) Enzyme antidote for experimental cyanide poisoning.Lancet 14, 1446.

    Article  Google Scholar 

  • Blumenthal, K. M. &Heinrikson, R. I. (1971) Structural studies of bovine liver rhodanese I. Isolation and characterization of two active forms of the enzyme.J. Biol. Chem. 246, 2430–37.

    CAS  PubMed  Google Scholar 

  • Chen, K. K., Rose, C. L. &Clowes, G. H. A. (1933) Methylene blue, nutrients and sodium thiosulfate against cyanide poisoning.Proc. Soc. Exp. Biol. Med. 31, 250–2.

    Google Scholar 

  • Clemedson, C-J., Hultman, H. T. &Sorbo, B. (1955) A combination of rhodanese and ethanethiosulfonate as an antidote in experimental cyanide poisoning.Acta Physiol. Scand. 35, 31–5.

    Article  CAS  PubMed  Google Scholar 

  • Crompton, M. Palmieri, F., Capano, M., &Quagliariello, E. (1974) The transport of thiosulphate in rat liver mitochondria.FEBS Lett. 46, 247–50.

    Article  CAS  PubMed  Google Scholar 

  • Davis, B. J. (1964) Disc Electrophoresis II. Method and application to human serum proteins.Ann. N.Y. Acad. Sci. 404–27.

  • Devlin, D. J., Mills, J. W. &Smith, R. P. (1989) Histochemical localization of rhodanese activity in rat liver and skeletal muscle.Toxcol. Appl. Pharmacol 97, 247–55.

    Article  CAS  Google Scholar 

  • Drawbaugh, R. B. &Marrs, T. C. (1987) Interspecies differences in rhodanese (thiosulfate sulfurtransferase, EC2.8.1.1) activity in liver, kidney and plasma.Comp. Biochem. Physiol. 863, 307–10.

    Google Scholar 

  • Ducek, M., Fredo, J. &Koj, A. (1980) Subcellular compartmentation of rhodanese and 3-mercaptopyruvate sulfurtransferase in the liver of some vertebrate species.Comp. Biochem. Physiol. 65B, 383–6.

    Google Scholar 

  • Frankenberg, L. &Sorbo, B. H. (1975) Effect of cyanide antidotes on the metabolic conversion of cyanide to thiocyanate.Arch. Toxicol. 33, 81–9.

    Article  CAS  PubMed  Google Scholar 

  • Garvey, J. S. Cremer, N. E. &Sussdorf, D. H. (1977)Methods in Immunology pp. 194–203. Reading, MA: Wa Benjamin, Inc.

    Google Scholar 

  • Hol, W. G. J., Liuk, L. J. &Kalk, K. H. (1983) The high resolution three-dimensional structure of bovine liver rhodanese.Fund. Appl. Toxicol. 3, 370–6.

    CAS  Google Scholar 

  • Horowitz, P. M. (1978) Purification of thiosulfate sulfurtransferase by selective immobilization of blue agarose.Analytical Biochem. 86, 751–3.

    Article  CAS  Google Scholar 

  • Horowitz, P. &Bowman, S. (1977) Reversible thermal denaturation of immobilized rhodanese.J. Biol. Chem. 262, 5587–91.

    Google Scholar 

  • Koj, A. (1979)Natural Sulfur Compounds: Novel Biochemical and Structural Aspects (edited byCavallini, D., Degaull, V. &Zappia, V.), pp. 493–503, New York: Plenum.

    Google Scholar 

  • Lang, K. (1933) Die rhodanbildung im tierkorper.Biochem Z. 259, 243–56.

    CAS  Google Scholar 

  • Merrill, G. A., Horowitz, P. M., Bowman, S., Bentley, K. &Klebe, R. (1988) Detection of time-dependent and oxidatively induced antigens of bovine liver rhodanese with monoclonal antibodies.J. Biol. Chem. 263, 19324–30.

    CAS  PubMed  Google Scholar 

  • Mimori, Y., Nakamura, S. &Kameyama, M. (1984) Regional and subcellular distribution of cyanide metabolizing enzymes in the central nervous system.J. Neurochem. 43, 540–5.

    CAS  PubMed  Google Scholar 

  • Oi, S. (1975) Inhibition of rat liver rhodanese by ditricarboxylic, and α-keto acids.J. Biochem. 78, 825–34.

    CAS  PubMed  Google Scholar 

  • Piantadosi, C. A. &Sylvia, A. L. (1984) Cerebral cytochrome a3 inhibition by cyanide in bloodless rats.Toxicol. 33, 67–79.

    Article  CAS  Google Scholar 

  • Ploegman, J. H., Drent, G., Kalk, K. H., Hol, W. G. J., Heinrikson, R. L., Kelm, P., Weng, L. &Russell, J. (1978) The covalent and tertiary structure of bovine liver rhodanese.Nature 273, 124–9.

    Article  CAS  PubMed  Google Scholar 

  • Routowski, J. V., Roebuck, B. D. &Smith, R. P. (1985) Effects of protein-free diet and food deprivation on hepatic rhodanese activity, serum proteins and acute cyanide lethality in mice.J. Nutr. 115, 132–7.

    Google Scholar 

  • Smith, R. G. &Malcolm, R. L. (1930) Urinary sulphur and thiocyanate excretion in cyanide poisoning.J. Pharmacol. Experimen. Therapeut. 40, 457–71.

    CAS  Google Scholar 

  • Sorbo, B. H. (1953) Crystalline rhodanese I. Purification and physiochemical examination.Acta Chem. Scand. 7, 1129–36.

    Article  CAS  Google Scholar 

  • Sorbo, B. H. (1975) Thiosulfate sulfurtransferase and mercaptopyruvate sulfurtransferase. InMetabolic Pathways, Vol. 7, (edited byGreenberg, D. M.) pp. 433–56, Academic Press, New York.

    Google Scholar 

  • Sylvester, D. M., Sander, C., Leather, C. &Way, J. L. (1981) Histochemistry of a sulfurtransferase.Pharmacologist 23, 115.

    Google Scholar 

  • Sylvester, D. M., Hayton, W. L., Sander, C. &Way, J. L. (1983) Effects of thiosulfate on cyanide pharmacokinetics in dogs.Toxicol. Appl. Pharmacol. 69, 265–71.

    Article  CAS  PubMed  Google Scholar 

  • Volini, M., Craven, D. &Ogata, M. (1978) The different molecular weight forms of bovine liver rhodanese.J. Biol. Chem. 253, 7591–4.

    CAS  PubMed  Google Scholar 

  • Volini, M., &Alexander, K. (1981) Multiple forms and multiple functions of the rhodaneses. InCyanide in Biology (edited byVennesland, B., Conn, E., Knowles, C. J., Westley, J. &Wissing, F.), pp. 77. London, Academic Press.

    Google Scholar 

  • Wang, S. F., &Violini, M. (1968) Studies on the active site of rhodanese.J. Biol. Chem. 243, 5465–70.

    CAS  PubMed  Google Scholar 

  • Westley, J., Aldera, H., Westley, L. &Nishida, C. (1983) The sulfur transferases.Fund. Appl. Toxicol. 3, 377–82.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sylvester, D.M., Sander, C. Immunohistochemical localization of rhodanese. Histochem J 22, 197–200 (1990). https://doi.org/10.1007/BF02386005

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02386005

Keywords

Navigation