Skip to main content
Log in

Quadrature domains and kernel function zipping

  • Published:
Arkiv för Matematik

Abstract

It is proved that quadrature domains are ubiquitous in a very strong sense in the realm of smoothly bounded multiply connected domains in the plane. In fact, they are so dense that one might as well assume that any given smooth domain one is dealing with is a quadrature domain, and this allows access to a host of strong conditions on the classical kernel functions associated to the domain. Following this string of ideas leads to the discovery that the Bergman kernel can be “zipped” down to a strikingly small data set.

It is also proved that the kernel functions associated to a quadrature domain must be algebraic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov, D. andShapiro, H. S., Domains on which analytic functions satisfy quadrature identities.J. Anal. Math. 30 (1976), 39–73.

    MathSciNet  Google Scholar 

  2. Bell, S. R., The Szegő projection and the classical objects of potential theory in the plane.Duke Math. J. 64 (1991), 1–26.

    Article  MATH  MathSciNet  Google Scholar 

  3. Bell, S. R.,The Cauchy Transform, Potential Theory, and Conformal Mapping, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

    Google Scholar 

  4. Bell, S. R., Unique continuation theorems for the\(\bar \partial \)-operator and applications,J. Geom. Anal. 3 (1993), 195–224.

    MATH  MathSciNet  Google Scholar 

  5. Bell, S. R., Complexity of the classical kernel functions of potential theory,Indiana Univ. Math. J. 44 (1995), 1337–1369.

    Article  MATH  MathSciNet  Google Scholar 

  6. Bell, S. R., Finitely generated function fields and complexity in potential theory in the plane.Duke Math. J. 98 (1999), 187–207.

    Article  MATH  MathSciNet  Google Scholar 

  7. Bell, S. R., Ahlfors maps, the double of a domain, and complexity in potential theory and conformal mapping.J. Anal. Math. 78 (1999), 329–344.

    MATH  MathSciNet  Google Scholar 

  8. Bell, S. R., The fundamental role of the Szegő kernel in potential theory and complex analysis.J. Reine Angew. Math. 525 (2000), 1–16.

    MATH  MathSciNet  Google Scholar 

  9. Bell, S. R., Complexity in complex analysis,Adv. Math. 172 (2002), 15–52.

    Article  MATH  MathSciNet  Google Scholar 

  10. Bell, S. R., Möbius transformations, the Carathéodory metric, and the objects of complex analysis and potential theory in multiply connected domains.Michigan Math. J. 51 (2003), 351–362.

    Article  MATH  MathSciNet  Google Scholar 

  11. Farkas, H. M. andKra, I.,Riemann Surfaces, Springer-Verlag, New York-Berlin, 1980.

    Google Scholar 

  12. Gustafsson, B., Quadrature identities and the Schottky double,Acta Appl. Math. 1 (1983), 209–240.

    Article  MATH  MathSciNet  Google Scholar 

  13. Gustafsson, B., Applications of half-order differentials on Riemann surfaces to quadrature identities for arc-length,J. Anal. Math.,49 (1987), 54–89.

    MATH  MathSciNet  Google Scholar 

  14. Jeong, M. andTaniguchi, M., Bell representations of finitely connected planar domains.Proc. Amer. Math. Soc. 131 (2003), 2325–2328.

    Article  MathSciNet  Google Scholar 

  15. Shapiro, H. S.,The Schwarz Function and its Generalization to Higher Dimensions, Univ. of Arkansas Lecture Notes in the Mathematical Sciences9, Wiley, New York, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by NSF grant DMS-0305958.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, S.R. Quadrature domains and kernel function zipping. Ark. Mat. 43, 271–287 (2005). https://doi.org/10.1007/BF02384780

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02384780

Keywords

Navigation