Skip to main content
Log in

Captive breeding, paternity determination, and genetic variation in chimpanzees (Pan troglodytes) in the Australasian region

  • Research Report
  • Published:
Primates Aims and scope Submit manuscript

Abstract

DNA “fingerprinting” using polymorphic (CA)-repeat microsatellite markers was used to quantify the level of genetic variation present in chimpanzees (Pan troglodytes) in the Australasian region. These markers were also used to determine the paternity of chimpanzees born at Taronga Zoo over a 20-year period. The results suggested that the dominant male in the colony was responsible for siring most, but not all, of the offspring. Where the dominant male was excluded from paternity, the sire was identifiable if all candidate males were available for typing. This enabled us to prove the captive origin of offspring born in the colony during this period. Thus, microsatellite analysis was a useful tool for assignment of familial relationships and improving genetic management of breeding colonies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Caslick, S. 1996. Australasian Regional Captive Management Plan for Chimpanzees (Pan troglodytes). Australasian Regional Association of Parks and Aquaria, Sydney.

    Google Scholar 

  • Garza, J. C.;Slatkin, M.;Freimer, N. B. 1995. Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size.Mol. Biol. Evol., 12: 594–603.

    CAS  PubMed  Google Scholar 

  • Groves, C. P.;Westwood, C.;Shea, B. T. 1992. Unfinished business: Mahalanobis and a clockwork orang.J. Human Evol., 22: 327–340.

    Google Scholar 

  • Hill, W. C. O. 1969. The nomenclature, taxonomy and distribution of chimpanzees. In:The Chimpanzee,Bourne,G. H. (ed.), Karger, Basel, pp. 22–49.

    Google Scholar 

  • Houlden, B. A.;England, P.;Sherwin, W. B. 1996. Paternity exclusion in koalas using hypervariable microsatellites.J. Heredity, 87: 149–152.

    CAS  Google Scholar 

  • Lacy, R. 1994.Genes 11.50: Pedigree Analysis Software. Chicago Zoo Park, Chicago.

    Google Scholar 

  • Lahiri, D. K.;Nurnberger, J. I., Jr. 1991. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies.Nucl. Acids Res., 19: 5444.

    CAS  PubMed  Google Scholar 

  • Morin, P. A.;Wallis, J.;Moore, J. J.;Chakraborty, R.;Woodruff, D. S. 1993. Non-invasive sampling and DNA amplification for paternity exclusion, community structure, and phylogeography in wild chimpanzees.Primates, 34: 347–356.

    Article  Google Scholar 

  • Pascali, V. L.;Bisol, G. D.;Dobosz, M.;D'Aloja, E. 1994. Chimpanzee DNA profiles on trial.Nature, 367: 692–693.

    CAS  PubMed  Google Scholar 

  • Scobie, P. 1994.Single Population Animal Records Keeping System (SPARKS) 1.3. International Species Information System, Minnesota.

    Google Scholar 

  • Takenaka, O.;Takasaki, H.;Kawamoto, S.;Arakawa, M.;Takenaka, A. 1993a. Polymorphic microsatellite DNA amplification customized for chimpanzee paternity testing.Primates, 34: 27–35.

    Google Scholar 

  • Takenaka, O.;Udono, T.;Arakawa, M.;Takasaki, H.;Takenaka, A. 1993b. Chimpanzee microsatellite PCR primers applied to paternity testing in a captive colony.Primates, 34: 357–363.

    Google Scholar 

  • Thompson, D. M.;Brown, N. N.;Clague, A. E. 1992. Routine use of hair root or buccal swab specimens for PCR analysis: advantages over using blood.Clinica Chimica Acta, 207: 169–174.

    Google Scholar 

  • Tomfohrde, J.;Wood, S.;Schertzer, M.;Wagner, M. J.;Wells, D. E.;Parrish, J.;Sadler, L. A.;Blanton, S. H.;Daiger, S. P.;Wang, Z.;Wilke, P. J.;Weber, J. L. 1992. Human chromosome 8 linkage map based on short tandem repeat polymorphisms: effect on genotyping errors.Genomics, 14: 144–152.

    Article  CAS  PubMed  Google Scholar 

  • Weber, P. L.;May, P. E. 1989. Abundant class of human DNA polymorphism which can be typed using the polymerase chain reaction.Amer. J. Human Genet., 44: 388–396.

    CAS  Google Scholar 

  • Weissenbach, J.;Gyapay, G.;Dib, C.;Vignal, A.;Morissette, J.;Millasseau, P.;Vaysseix, G.;Lathrop, M. 1992. A second-generation linkage map of the human genome.Nature, 359: 794–801.

    Article  CAS  PubMed  Google Scholar 

  • Wilkie, P. J.;Krizman, D. B.;Weber, J. L. 1992. Linkage map of human chromosome 9 microsatellite polymorphisms.Genomics, 12: 607–609.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Houlden, B.A., Woodworth, L. & Humphrey, K. Captive breeding, paternity determination, and genetic variation in chimpanzees (Pan troglodytes) in the Australasian region. Primates 38, 341–347 (1997). https://doi.org/10.1007/BF02381621

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02381621

Key Words

Navigation