Skip to main content
Log in

Coupling of resorption and formation on bone remodeling sequence in orthodontic tooth movement: A histochemical study

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Rat's molars were submitted to orthodontic tooth movement. Bone formation areas were detected using lead-labeling technique. Osteoclasts and osteoblasts were detected by enzyme histochemistry using Tartrate resistant Acid phosphatase (TRACPase) and Alkaline phosphatase (ALPase) to determine simultaneously and mark the 2 types of cells on a same section. The sites selected for study were pressure/distal, tension/mesial and transitional areas of second molars. The results showed that: orthodontic force activated bone remodeling sequence throughout the alveolar bone; slight new bone formation was observed on the cement line on the pressure side. ALPase-positive cells were detected on the pressure side neighboring osteoclasts. On the tension side, bone formation was enhanced in the protrusions whereas both resorption and formation were observed in the depressions. In the transitional area, cellular sequence from osteoclastic bone resorption to bone formation was revealed over the cement line. These findings demonstrated that: coupling phenomena occur on the pressure side but with inhibited osteoblast activity. Bone formation on the tension side involves both promotion of bone formation by the traction force; bone remodeling sequence is established on the tension side by the interaction between osteoclastic bone resorption and bone formation that takes place in the depressions; Coupling phenomena occur in the transitional area as well. Our findings on the pressure side led to the consideration that osteoblastic cells in periodontal ligament would be involved in the regulation of osteoclastic bone resorption.

Thus, there appears to be an interaction between osteoclastic and osteoblastic cells and an activated bone remodeling sequence involving the coupling phenomena as a mechanical adaptation to orthodontic force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sandstedt, C. (1904):Einige Beiträge Zur Theorie der Zahnregulierung. Nord.Tandl.Tidskr. 5:236,1904.

    Google Scholar 

  2. Flourens,J.P.: Théorie expérmentale de la formation des os. Paris 1847.

  3. Oppenheim, A. (1911): Die Veränderungen der Gewebe insbesondere des Knochens bei Verschiebung der Zähne, öster. Ung.Vjschr.Zahnheilk. 27,302–359,1911.

    Google Scholar 

  4. Baumrind, S. (1969): A reconsideration of the propriety of the “pressure-tension” hypothesis. Am. J. Orthod, 55,12–22,1969.

    Article  CAS  PubMed  Google Scholar 

  5. Roberts, E.W. and Chase, D.C. (1981): Kinetics of cell proliferation and migration associated with orthodontically-induced osteogenesis. J. Dent. Res. 60,174–181,1981.

    CAS  PubMed  Google Scholar 

  6. Utley, R.K. (1968): The activity of alveolar bone incident to orthodontic tooth movement as studied by oxytetracycline-induced fluorescence. Am. J. Orthod. 54,167–201,1968.

    Article  CAS  PubMed  Google Scholar 

  7. Ohuchi, K. (1974): Studies on the changes of the alveolar bone durig the experimental tooth movement by means of labeling methods and microradiography. Odontology 61,1072–1119,1974.

    Google Scholar 

  8. Yamasaki, K., Shibasaki, Y. and Fukuhara, T. (1982): Behavior of mast cells in periodontal ligament associated with experimental tooth movement in rats. J.Dent.Res. 61,1477–1450,1982.

    Google Scholar 

  9. Iida, J. (1982): A study on the time-course of the periodontal vascular permeability during experimental tooth movement. J.Stomatol.Soc., Jpn. 49,143–154,1982.

    CAS  Google Scholar 

  10. Davidovitch, Z., Shanfeld, J.L., Montgomery, P.C., Lally, E., Laster, L., Furst, L. and Korostoff, E (1984): Biochemical mediators of the effects of mechanical forces and electric currents on mineralized tissues. Calcif. Tissue Int. 36,S86-S97,1984.

    PubMed  Google Scholar 

  11. Deguchi, T. (1969): Histochemical study in periodontal tissue during tooth movement in the rat. J.Jpn. Orthod. Soc. 28,1–11,1969.

    CAS  Google Scholar 

  12. Ochiai, H. (1987): Histological investigations on the effect of Prostaglandin E2 (PGE2) applied to experimental tooth movement. J.Jpn. Orthod. Soc. 46,500–516,1987.

    CAS  Google Scholar 

  13. Lilja, E., Lindskog, S and Hammarstrom, L. (1983): Histochemistry of enzymes associated with tissue degradation incident to orthodontic tooth movement. Am. J. Orthod. 83,62–75,1983.

    Article  CAS  PubMed  Google Scholar 

  14. Lilja, E., Lindskog, S and Hammarstrom, L. (1984): Alkaline phosphatase activity and tetracycline incorporation during initial orthodontic tooth movement in rats. Acta Odontol. Scand. 42,1–11,1984.

    CAS  PubMed  Google Scholar 

  15. Kaita, K. (1988): Histological study of periodontal tissues incident to tooth movement by intermittent forces. Tsurumi Univ.Dent.J. 14,207–226,1988.

    Google Scholar 

  16. Waldo, C.M. (1953): Method for the study of response to tooth movement. J.Dent.Res. 32,690–691,1953.

    Google Scholar 

  17. Okada, M. und Mimura, T. (1938): Zur Physiologie und Pharmakologie der Hartgewebe.I.Mitteilung: Eine Vitalfärbungsmethode mit Bleisalzen und ihre Anwendung bei den Untersuchungen über die rhythmische Streifenbildung der harten Zahngewebe. Jap. J. Med. Sci. IV, Pharmacol. 11,166–170,1938.

    Google Scholar 

  18. Yoshiki, S. and Kurahashi, Y. (1972): An effective reactivation of alkaline phosphatase in hard tissue completely decalcified for light and electron microscopy. Histochemie, 29,296–304,1972.

    CAS  PubMed  Google Scholar 

  19. Burstone, M.S. (1960): Histochemical observation on enzymatic processes in bone and teeth.: Ann.N.Y.Acad.Sci. 85,431–444,1960.

    CAS  PubMed  Google Scholar 

  20. Burstone, M.S. (1959): Histochemical demonstration of acid phosphatase activity in osteoclasts.: J.Histochem.Cytochem. 7,39–41,1959.

    CAS  PubMed  Google Scholar 

  21. Van de Wijngaert, F.P. and Burger, E.H. (1986): Demonstration of tartrate-resistant acid phosphatase in undecalcified, glycolmethacrylate-embedded mouse bone: A possible marker for (pre)osteoclast identification. J.Histochem.Cytochem. 34,1317–1323,1986.

    PubMed  Google Scholar 

  22. Mayahara, H., Hirano, H., Saito, T., and Ogawa, K. (1967): The new lead citrate method for the ultracytochemical demonstration of activity of non-specific alkaline phosphatase. Histochemie 11,88–96,1967.

    Article  CAS  PubMed  Google Scholar 

  23. Sicher, H and Weinmann, J.P. (1944): Bone growth and physiologic tooth movement. Oral Surgery 30,109–132,1944.

    Google Scholar 

  24. Hori, K. (1981): A study on the vascular permeability of the periodontal membrane in relation to tooth movement. J.Stomatol.Soc.,Jpn. 48,52–66,1981.

    CAS  Google Scholar 

  25. Taguchi, M (1987): Study on prostaglandin E involve in tooth movement -Immunohisto-chemical observation-. J.Stomatol.Soc., Jpn. 54,106–128,1987.

    CAS  Google Scholar 

  26. Baron, R (1973): Remaniement de l' os alveolaire et des fibres desmodontales au cours de la migration physiologique. J.Biol.Buccale 1,151–170,1973.

    Google Scholar 

  27. Vignery, A. and Baron, R (1980): Dynamic histomorphometry of alveolar bone remodeling in the adult rat. Anat. Rec. 196,191–200,1980.

    Article  CAS  PubMed  Google Scholar 

  28. Frost, H.M.: Bone remodeling and its relationship to metabolic bone disease. Cgarles C Thomas, Springfield, Illinois, 1973.

    Google Scholar 

  29. Rasmussen, H. and Bordier, P.: The physiological and cellular basis of metabolic bone disease. Williams and Wilkins Co., Baltimore, 1974.

    Google Scholar 

  30. Hermanson, P.C. (1972): Alveolar bone remodeling incident to tooth movement. Angle Orthod. 42,107–115,1972.

    CAS  PubMed  Google Scholar 

  31. Baron, R.: Importance of the intermediate phases between resorption and formation in the mesurement and understanding of the bone remodeling sequence. In: (ed. by) P.J. Meunier: Bone histomorphometry. Lab. Armour Montagu, Paris (p. 179–183), 1977.

    Google Scholar 

  32. Baylink,D.J., Farley,J.R., Howard,G., Drivadahl,R., Ed Puzas., Masuda,T., Ivey, J. and Gruber,H.: Coupling factor, advances in experimental medicine and biology. In “Regulation of phosphate and mineral metabolism” (eds. Massry,S.G., Letteri,J.M. and Ritz,E.) 151,409–421,1982.

  33. Ozawa, H., Imamura, K., Fukuhara, T. Shibasaki, Y., Takahashi, N., Abe, E. and Suda, T.: Effect of continuously applied compressive force on bone formation and resorption in vitro. In: (ed. by) K. Kubota: Mechano-biological research on the masticatory system. Tokyo Press, Tokyo (p. 188–193), 1989.

    Google Scholar 

  34. Takahashi, N., Akatsu, T., Udagawa, N., Sasaki, T., Yamaguchi, A., Moseley, J.M., Martin, T.J. and Suda, T. (1988): Osteoblastic cells are involved in osteoclast formation. Endocrinology 123,2600–2602,1988.

    CAS  PubMed  Google Scholar 

  35. Irie, K. and Ozawa, H. (1990): Relationships between tooth eruption, occlusion and alveolar bone resorption: Cytological and cytochemical studies of bone resorption on rat incisor alveolar bone facing the enamel. Arch. Histol. Cytol. 53,497–509,1990.

    CAS  PubMed  Google Scholar 

  36. Hasegawa, S., Sato, S., Saito, S., Suzuki, Y. and Brunette, D.M. (1985): Mechanical stretching increases the number of cultured bone cells synthesizing DNA and alters their pattern of protein synthesis. Calcif. Tissue Int. 37,431–436,1985.

    CAS  PubMed  Google Scholar 

  37. Yamada, M., Hirayama, A. and Miake, K. (1989): Morphological study responses to mechanical stretching in fibroblasts derivered from human periodontal ligaments.J.Tokyo Dent. College Soc. 89,1719–1723,1989.

    CAS  Google Scholar 

  38. Miyajima, K. (1990): Effects of periodic tension on osteoblast like cells for cell differentiation and alkaline phosphatase activity. J.Jpn.Orthd. Soc. 49,226–236,1990.

    CAS  Google Scholar 

  39. Inage, S. (1985): Tissue response of interparietal suture to tensile stimulus in vitro -Light and electron microscopic observation-. J.Stomatol Soc., Jpn. 52,143–161,1985.

    CAS  Google Scholar 

  40. Kurihara, S and Enlow, D.H. (1980): An electron microscopic study of attachments between periodontal fibers and bone during alveolar remodeling. Am. J. Orthod. 77,516–531,1980.

    CAS  PubMed  Google Scholar 

  41. Oguro, I and Ozawa, H. (1988): The histochemical localization of acid phosphatase activity in BMU. J.Bone and Mineral Metabolism 6, 190–195,1988.

    Google Scholar 

  42. Oguro, I and Ozawa, H. (1989): Cytochemical studies of the cellular events in bone remodeling: Cytological evidence for a coupling mechanism. J.Bone and Mineral Metabolism 7,30–36,1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Mohri, T., Hanada, K. & Ozawa, H. Coupling of resorption and formation on bone remodeling sequence in orthodontic tooth movement: A histochemical study. J Bone Miner Metab 9, 57–69 (1991). https://doi.org/10.1007/BF02377987

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02377987

Key words

Navigation