Skip to main content
Log in

Changes in the action potential and contractile properties of skeletal muscle in human's with repetitive stimulation after long-term dry immersion

  • Original Article
  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Abstract

This paper compares the effects of 7-daydry immersion and intermittent muscle contraction on electrical and mechanical failure during muscle fatigue in the human triceps surae muscle electrically stimulated at 50 impulses·s−1 via its motor nerve. Intermittent contractions of 60-s duration were separated by 1-s intervals for identical duration of tension development. The 60-s intermittent contractions decreased tetanic force to 57% (P<0.05) of initial values, but force reduction was not significantly different in the two fatigue tests: the fatigue index was 36.2 (SEM 5.4)% versus 38.6 (SEM 2.8)%, respectively (P>0.05). Whilst identical force reduction was present in the two fatigue tests, it would appear that concomitant electrical failure was considerably different. This electromechanical dissociation would suggest that a slowing of conduction along nerve and muscle membranes did not explain the observed mechanical failure. It is suggested that intracellular processes played major role in contractile failure during intermittent contractions after muscle disuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badalyan LO, Skvortsov IA (1986) Clinical electromiography. Medicine Moscow

    Google Scholar 

  • Bezanilla F, Caputo C, Gonzalez-Serratos H, Venosa RA (1972) Sodium dependence of the inward spread of activation in isolated twitch muscle fibres of the frog. J Physiol 223:507–523

    CAS  PubMed  Google Scholar 

  • Bianchi CP, Narayon S (1982) Muscle fatigue and the role of transverse tubules. Science 215:295–296

    CAS  PubMed  Google Scholar 

  • Bigland-Ritchie BR (1981) EMG force relations and fatigue of human voluntary contraction. Exerc Sport Sci Rev 9:75–117

    CAS  PubMed  Google Scholar 

  • Bigland-Ritchie BR, Jones DA, Woods JJ (1979) Excitation frequency and muscle fatigue: electrical responses during human voluntary and stimulated contraction. Exp Neurol 64:414–427

    Article  CAS  PubMed  Google Scholar 

  • Bigland-Ritchie BR, Johansson R, Lippold OCJ, Smith S, Woods JJ (1983) Changes in motoneurone firing rates during sustained maximal voluntary contractions. J Physiol 340:335–346

    CAS  PubMed  Google Scholar 

  • De Luca CJ (1979) Physiology and mathematics of myoelectric signals. IEEE Trans Biomed Engl 313–325

  • Desmedt JE (1958) Methodes d'étute de la fonction neuromusculaire chez l'homme: myoframme isometrique, electromyogramme d'excitation et topographie de l'innervation terminale. Acta Neurol Psychiatr Belg 58:977–1017

    CAS  PubMed  Google Scholar 

  • Desmedt JE, Emeryk B, Renoirte P, Hainaut K (1968) Disorder of contraction processes in sex-linked (Duchenne) muscular dystrophy, with correlative electromyographic study of myopathic involvement in small hand muscles. Am J Med 45:853–872

    Article  CAS  PubMed  Google Scholar 

  • Edwards RHT (1981) Human muscle function and fatigue. In: Porter R, Whelan J (eds) Human fatigue: physiological mechanisms. Pitman Medical, London, pp 1–18

    Google Scholar 

  • Edwards RHT, Lippold OCJ (1956) The relationship between tension and intergrated electrical activity in fatigue muscle. J Physiol 132:677–681

    CAS  PubMed  Google Scholar 

  • Edwards RHT, Hill DK, MacDonnell M (1972) Myothermal and intermuscular pressure measurement during isometric contractions of the human quadriceps muscle. J Physiol 224:58P-59P

    CAS  PubMed  Google Scholar 

  • Fitts RH, Courtright JB, Kim DH, Witzmann FA (1982) Muscle fatigue with prolonged exercise: contractile and biochemical alterations. Am J Physiol 242:C65-C73

    CAS  PubMed  Google Scholar 

  • Herbison GJ, Jaweed MM, Ditunno JF (1978) Muscle fibre atrophy after cast immobilization in the rat. Arch Phys Med Rehabil 59:301–305

    CAS  PubMed  Google Scholar 

  • Jones DA, Bigland-Ritchie BR, Edwards RHT (1979) Excitation frequency and muscle fatigue: mechanical responses during voluntary and stimulated contractions. Exp Neurol 64:401–413

    CAS  PubMed  Google Scholar 

  • Khristova LG, Gidikov AA, Aslanova IF, Kirenskaya AV, Kozlova VG, Kozlovskaya IB (1986) Effect of immersion hypokinesia on some parameters of human muscle potentials. Kosm Biol Aviakosm Med 20:27–31.

    CAS  PubMed  Google Scholar 

  • Kim DH, Witzmann FA, Fitts RH (1982) The effect of disuse on sarcoplasmic reticulum function in fast and slow skeletal muscle. Am J Physiol 243:C156-C160

    CAS  PubMed  Google Scholar 

  • Koryak YA (1992) Methods of investigation of neuromyscular system of athlete. IMBP, Moscow

    Google Scholar 

  • Koryak YA (1994) A comparison of the contractile properties in human leg muscles. Physiol J 40:30–38

    Google Scholar 

  • Koryak YA (1995) Contractile properties of the human triceps surae muscle during simulated weightlessness. Eur J Appl Physiol 70:344–350

    Article  CAS  Google Scholar 

  • Koryak YA, Polyakov VV, Potsepaev AI, Martyanov VA (1975) The research of dynamic capacity for work peripheral neuromuscular system of athlete. In: Korobkov AV (ed) Physiological grounds of movement control Academic, Moscow, pp 73–74

    Google Scholar 

  • Krnjevic K, Miledi R (1958) Failure of neuromuscular propagation in rats. J Physiol 140:440–461

    CAS  PubMed  Google Scholar 

  • Lannergen J, Westerbled H (1982) Action potential fatigue in single skeletal muscle fibres of Xenopus. Acta Physiol Scand 129:311–318

    Google Scholar 

  • Lindstrom J, Magnusson RT (1977) Interpretation of myoelectric power spectra: a model and its applications. Proc IEEE 65:653–662

    Google Scholar 

  • Lindstrom L, Kadefors R, Petersen I (1977) An electromyographic index for localized muscle fatigue. J Appl Physiol 43:750–754

    CAS  PubMed  Google Scholar 

  • Maier A, Crockett JI, Simpson DR, Saubert CW IV, Edgerton VR (1976) Properties of immobilized guinea pig hind-limb muscles. Am J Physiol 231:1520–1526

    CAS  PubMed  Google Scholar 

  • Matrin TP, Edgerton VR, Grindeland RE (1988) Influence of spaceflight on rat skeletal muscle. J Appl Physiol 65:2318–2325

    Google Scholar 

  • Merton PA (1954) Voluntary strength and fatigue. J Physiol 123:553–564

    CAS  PubMed  Google Scholar 

  • Milner-Brown HS, Miller RG (1986) Muscle membrane excitation and impulse propagation velocity are reduced during muscle fatigue. Muscle Nerve 9:367–374

    Article  CAS  PubMed  Google Scholar 

  • Moritani T, Nagata A, Vries H de, Muro M (1981) Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics 24:339–350

    CAS  PubMed  Google Scholar 

  • Moritani T, Muro M, Nagata A (1986) Intramuscular and fatigue surface electromyogram changes during fatigue. J Appl Physiol 60:1179–1185

    CAS  PubMed  Google Scholar 

  • Noskov VB, Kozyrevskaya GI, Morukov BV, Artamasova EM, Rustamyan LA (1985) Body position during hypokinesia and fluid-electrolyte metabolism. Kosm Biol Aviakosm Med 19:31–34

    CAS  PubMed  Google Scholar 

  • Riley DA, Ilyina-Kakueva EI, Ellis S, Bain JLW, Slocum GR, Sedlak FR (1990) Skeletal muscle fibre, nerve, and blood vessel breakdown in space-flown rats. FASEB J 4:84–91

    CAS  PubMed  Google Scholar 

  • Ruzzier F, Gregorio F, Scuka M (1982) On the changes of the time course of the end-plate current during repetitive stimulation Pflügers Arch 329:121–132

    Google Scholar 

  • Sandow A (1965) Excitation-contraction coupling in skeletal muscle. Pharmacol Rev 17:265–320

    CAS  PubMed  Google Scholar 

  • Shulzhenko EV, Vil-Villiams IE (1976) Possibility of a long-term water immersion by the method of “dry” plunging. Kosm Biol Aviakosm Med 10:82–84

    CAS  Google Scholar 

  • Sica REP, McComas AJ (1971) An electrophysiological investigation of limb-girdle and facioscapulohumeral dystrophy. J Neurol Neurosurg Psychiatry 34:469–474

    CAS  PubMed  Google Scholar 

  • Skvortsov IA (1981) Electroneuromyography. Technique. Dynamics of recordings in ontogenesis. In: Badalyan LO, Skvortsov IA (eds). Clinical and electroneuromuscular study of neuromuscular diseases and syndromes. Moscow, pp 37–71

  • Stalberg E (1966) Propagation velocity in human muscle fibres in situ. Acta Physiol Scand 70 [Suppl 287]:1–112

    Google Scholar 

  • St.-Pierre D, Gardiner PF (1985) Effect of “disuse” on mammalian fast-twitch muscle: joint fixation compared with neurally applied retrodoxin. Exp Neurol 90:635–651

    CAS  PubMed  Google Scholar 

  • White MJ, Davies CTM (1984) The effects of immobilization, after lower leg fracture, on the contractile properties of human triceps surae. Clin Sci 66:277–282

    CAS  PubMed  Google Scholar 

  • Wilkie DR (1986) Muscular fatigue: effects of hydrogen ions and inorganic phosphate. Fed Proc, 45:2921–2923

    CAS  PubMed  Google Scholar 

  • Witzmann FA, Kim DH, Fitts RH (1982a) Recovery time course in contractile function of fast and slow skeletal muscle after hindlimb immobilization. J Appl Physiol 52:677–682

    CAS  PubMed  Google Scholar 

  • Witzmann FA, Kim DH, Fitts RH (1982b) Hindlimb immobilization: length-tension and contractile properties of skeletal muscle. J Appl Physiol 53:335–345

    CAS  PubMed  Google Scholar 

  • Witzmann FA, Kim DH, Fitts RH (1983) Effect of hindlimb immobilization on the fatigability of skeletal muscle. J Appl Physiol 54:1242–1248

    CAS  PubMed  Google Scholar 

  • Woods FF, Furbush F, Bigland-Ritchie B (1987) Evidence for a fatigue-induced reflex inhibition of motoneuron firing rates. J Neurophysiol 58:125–137

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koryak, Y. Changes in the action potential and contractile properties of skeletal muscle in human's with repetitive stimulation after long-term dry immersion. Europ. J. Appl. Physiol. 74, 496–503 (1996). https://doi.org/10.1007/BF02376764

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02376764

Key words

Navigation