Skip to main content
Log in

The detection of hydrogen in molten aluminium

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The presence of hydrogen in aluminium poses problems to the foundry and casting industries, because high residual hydrogen contents in molten aluminium cause significant porosity in the solid aluminium after casting. This usually renders the product useless as it may fail mechanically. Therefore, fast, accurate and reliable techniques are required for monitoring the dissolved hydrogen content in molten aluminium, but this particularly harsh environment places considerable restrictions on the equipment that can be used. Several methods are available for the determination of hydrogen in aluminium melts, but they either suffer problems of accuracy, reliability and longevity or are not applicable to industrial environments. It is considered that the most appropriate device for the hydrogen analysis in aluminium melts should be an electrochemical sensor, which employs a proton conducting solid electrolyte in conjunction with a measuring electrode and a suitable reference electrode. The electromotive force of such a cell allows direct calculation of the hydrogen concentration in the melt. However, all the electrochemical sensors reported in the literature thus far exhibit distinct drawbacks. This article discusses the various techniques for the determination of hydrogen in molten aluminium with particular emphasis on the benefits and shortcomings of the existing electrochemical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

6. References

  1. C.E. Ransley and H. Neufeld, J. Inst. Met.74, 599 (1948).

    CAS  Google Scholar 

  2. P.M. Thomas and J.E. Gruzleski, Met. Trans. B9, 139 (1978).

    Google Scholar 

  3. P.D. Hess, J. Metals,25, no. 10, 46 (1973).

    CAS  Google Scholar 

  4. F. Degrève, J. Metals,27, no. 3, 21 (1975).

    Google Scholar 

  5. D.V. Neff, in: Metals Handbook, 9th Edition, Volume 15, Casting, American Society for Metals, 1988, p. 445.

  6. P.N. Anyalebechi, in: Light Metals 1991, The Minerals, Metals & Materials Society, 1991, p. 1025.

  7. Metals Handbook, 9th Edition, Volume 9, Metallography and Microstructures, American Society for Metals, 1985, p. 363, Figure 30 and p. 632, 633, Figures 21, 22, 24, 25.

  8. Metals Handbook, 9th Edition, Volume 9, Metallography and Microstructures, American Society for Metals, 1985, p. 364, Figure 31.

  9. P.N. Anyalebechi, Scr. Met. Mat.33, 1209 (1995)

    CAS  Google Scholar 

  10. P.N. Anyalebechi, in: Light Metals 1998, The Minerals, Metals & Materials Society, 1998, p. 827.

  11. D.A. Anderson, D.A. Granger and J.G. Stevens, in: B. Closset (Editor), Production and Electrolysis of Light Metals, Pergamon Press, 1989, p. 163.

  12. J.F. Pelton, Patent US 4624128 (1986).

  13. J.-P. Martin, F. Tremblay and G. Dubé, in: Light Metals 1989, The Minerals, Metals & Materials Society, 1989, p. 903.

  14. Product literature from ABB Bomem Inc, http://www.bomem.com/metal/index.htm.

  15. H. Iwahara, Solid State Ionics77, 289 (1995).

    Article  CAS  Google Scholar 

  16. H. Iwahara, Solid State Ionics86–88, 9 (1996).

    Google Scholar 

  17. R. Gee and D.J. Fray, Met. Trans. B.9, 427 (1978).

    Google Scholar 

  18. H. Iwahara, H. Uchida, T. Nagano and K. Koide, Denki Kagaku57, 992 (1989).

    CAS  Google Scholar 

  19. T. Yajima, K. Koide, K. Yamamoto and H. Iwahara, Denki Kagaku58, 547 (1990).

    CAS  Google Scholar 

  20. T. Yajima, H. Iwahara, K. Koide and K. Yamamoto, Sensors and Actuators B5, 145 (1991).

    Google Scholar 

  21. T. Yajima, K. Koide, N. Fukatsu, T. Ohashi and H. Iwahara, Sensors and Actuators B13–14, 697 (1993).

    Google Scholar 

  22. T. Yajima, K. Koide, H. Takai, N. Fukatsu and H. Iwahara, Solid State Ionics79, 333 (1995).

    Article  CAS  Google Scholar 

  23. M. Zheng and X. Zhen, Solid State Ionics59, 167 (1993).

    Article  CAS  Google Scholar 

  24. M. Zheng and X. Zhen, Met. Trans. B24, 789 (1993).

    Google Scholar 

  25. M. Zheng and X. Chen, Solid State Ionics70/71, 595 (1994).

    Article  Google Scholar 

  26. Product literature from TYK Corporation, http://www.stargate.net/tyk/new-prod.html.

  27. C. Schwandt and D.J. Fray, Ionics6, 222 (2000).

    Article  CAS  Google Scholar 

  28. L.C.B. Martins, C.W. Sanderson and J. Tessandori, in: Light Metals 1998, The Minerals, Metals & Materials Society, 1998, p. 817.

  29. C. Schwandt, D.J. Fray, M.P. Hills, M.A. Henson, R.M. Henson and C. Powell, in: Proceedings of the 6th International AFS Conference on Molten Aluminum Processing, American Foundry Society, Orlando, USA, 2001, p. 148.

    Google Scholar 

  30. C. Schwandt, D.J. Fray, M.P. Hills, M.A. Henson, R.M. Henson and C. Powell, Foundry Practice236, 12 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapham, D.P., Schwandt, C., Hills, M.P. et al. The detection of hydrogen in molten aluminium. Ionics 8, 391–401 (2002). https://doi.org/10.1007/BF02376052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02376052

Keywords

Navigation