Skip to main content
Log in

Copper diffusion in copper sulfide: a systematic study

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Copper sulfide Cu2−xS is a model mineral for chalcogenides because of the existence of a non-stoichiometric compounds series in the range Cu2S - CuS in which properties change with x. For this reason, we have studied the influence of the mineral composition on the diffusion in this solid.

Electrochemical Impedance Spectroscopy (EIS) applied to Cu2-xS/cupric sulfate electrolyte was the main investigation technique. It enabled us to work at the equilibrium potential at which the composition is fixed and known. Changing the composition by electrochemically removing (or adding) a known amount of Cu, we were able to determine the chemical diffusion coefficient of copper in the composition range (from x=0 to 0.066). In this work, we present the results obtained in the chalcocite and djurleite phases. These results were compared to other values reported in the literature. From this systematic study we discuss various diffusion mechanisms. Our observations support that in chalcocite and djurleite Cu diffuses via a vacancy mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

5. References

  1. M.D. Pritzker, R.H. Yoon, C. Basilio, et al., Can. Metall. Quart.24, 27 (1985).

    CAS  Google Scholar 

  2. J.A. Mielczarski, Rocz. Chem.59, 917 (1976).

    Google Scholar 

  3. J.O. Leppinen, C.I. Basilio, R.H. Yoon, Int. J. Miner. Process26, 259 (1989).

    Article  CAS  Google Scholar 

  4. C.A. Young, C.I. Basilio, R.H. Yoon, Int. J. Miner. Process31, 265 (1991).

    Article  CAS  Google Scholar 

  5. I. Persson, J. Coord. Chem.32, 261 (1994).

    CAS  Google Scholar 

  6. A.G. Stanley, in: Current topics in photovoltaics, Academic press (New York), Vol. 5 (1975).

    Google Scholar 

  7. W.D. Gill, R.H. Bube, J. Appl. Phys.41, 3731 (1970).

    CAS  Google Scholar 

  8. W. Arndt, G. Bilger, G.H. Hewig, et al., in: 2nd E.C. Photov. Solar Energy Conf. (K.V. Overstreaten, Ed.) Berlin, 1979, p. 826.

  9. J. Vedel, P. Covache, D. Lincot, in: 4th E.C. Photov. Solar Energy Conf. (W.H. Bloss, Ed.) Stresa, 1981, p. 822.

  10. J.B. Wagner Jr., in: Mass transport in oxides (J.B. Watchman Jr. and A.D. Franklin, Ed.) Special publication no. 296, 65 (1965).

  11. C. Wagner, J. Chem. Phys.21, 1819 (1953).

    CAS  Google Scholar 

  12. J.B. Wagner Jr., C. Wagner, J. Chem. Phys.26, 1602 (1957).

    CAS  Google Scholar 

  13. J.C.W. Folmer, F. Jellinek, J. Less-Common Metal.76, 153 (1980).

    CAS  Google Scholar 

  14. J.C.W. Folmer, Thesis of the Rijksuniversiteit (1981).

  15. J. Leloup, A. Ruaudel-Texier, A. Barraud, et al., Appl. Surf. Sci.68, 231 (1993).

    Article  CAS  Google Scholar 

  16. S. Sanchez, S. Cassaignon, J. Vedel, et al., Electrochim. Acta41, 1331 (1996).

    CAS  Google Scholar 

  17. E. Hirahara, J. Phys. Soc. Jpn.6, 422 (1951).

    Google Scholar 

  18. T. Kamaigachi, J. Sci. Hirosh. Univer.A16, 325 (1952).

    Google Scholar 

  19. H. Luquet, F. Guastavino, J. Bougnot, et al., Mater. Res. Bull.7, 955–962 (1972).

    Article  CAS  Google Scholar 

  20. R.W.I. Potter II, H.T. Evans Jr., J. Res. US Geol. Survey4, 205 (1976).

    Google Scholar 

  21. H.T. Evans Jr., Z. Krist.150, 299 (1979).

    CAS  Google Scholar 

  22. H.T. Evans Jr., Amer. Miner.66, 807 (1981).

    CAS  Google Scholar 

  23. N. Morimoto, K. Koto, Y. Shimazaki, Amer. Miner.54, 1256 (1969).

    Google Scholar 

  24. K. Koto, N. Morimoto, Acta Cryst.B26, 915 (1970).

    Google Scholar 

  25. N. Morimoto, K. Koto, Amer. Miner.55, 106 (1970).

    CAS  Google Scholar 

  26. R.W. Potter II, Geol. Soc. Amer. Bull.6, 915 (1974).

    Google Scholar 

  27. I. Oftedal, Z. Krist.83, 9 (1932).

    CAS  Google Scholar 

  28. H.T. Evans Jr., J.A. Konnert, Amer. Miner.61, 996 (1976).

    CAS  Google Scholar 

  29. Ohmasa, Miner. J. (Jap)8, 311 (1977).

    CAS  Google Scholar 

  30. H.J. Gotsis, A.C. Barnes, P. Strange, J. Phys.-Condens. Matter4, 10461 (1992).

    CAS  Google Scholar 

  31. N.W. Buerger, Econ. Geol.36, 19 (1941).

    CAS  Google Scholar 

  32. E.H. Roseboom Jr., Amer. Miner.47, 1181 (1962).

    CAS  Google Scholar 

  33. H.J. Mathieu, H. Rickert, Z. Phys. Chem. (Neue Folge)79, 315 (1972).

    CAS  Google Scholar 

  34. R.W. Potter II, Econ. Geol.72, 1524 (1977).

    CAS  Google Scholar 

  35. D.F.A. Koch, R.J. McIntyre, J. Electroanal. Chem.71, 285 (1976).

    Article  CAS  Google Scholar 

  36. J.S. Hanson, D.W. Fuerstenau, in: Flotation of sulfide minerals (K.S.E. Forssberg, Ed.) Elsevier, 1991, p. 33–47.

  37. H. Gomez-Meier, J. Vedel, R. Cordova, et al., J. Electroanal. Chem.388, 81 (1995).

    Google Scholar 

  38. L.H. Allen, E. Buhks, J. Appl. Phys.56, 327 (1984).

    Article  CAS  Google Scholar 

  39. S. Cassaignon, Thesis of the University Pierre et Marie Curie (Paris VI) (1998).

  40. S. Cassaignon, S. Sanchez, J. Vedel, et al., to be published.

  41. E. Castel, Thesis of the University Pierre et Marie Curie (Paris VI)(1977).

  42. H. Rickert, H.D. Wiemhöfer, Solid States Ionics11, 257 (1983).

    CAS  Google Scholar 

  43. H. Rickert, H.D. Wiemhöfer, Ber. Bunsenges. Phys. Chem.87, 236 (1983).

    CAS  Google Scholar 

  44. U. Tinter, H.D. Wiemhöfer, Solid State Ionics9&10, 1213 (1983).

    Google Scholar 

  45. T. Pauporté, J. Vedel, Solid State Ionics, in press, (1998).

  46. C. Ho, I.D. Raistrick, R.A. Huggins, J. Electrochem. Soc.127, 343 (1980).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassaignon, S., Pauporté, T., Guillemoles, J.F. et al. Copper diffusion in copper sulfide: a systematic study. Ionics 4, 364–371 (1998). https://doi.org/10.1007/BF02375879

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375879

Keywords

Navigation