Skip to main content
Log in

Qualitative modelling of mixed ionic/electronic devices with ion potential level diagrams

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Real space, potential energy level diagrams of electrons (“band diagrams”) are useful for describing devices, i.e. structures with spatially varying electronic carrier concentration. They help us to visualize situations in semiconductor materials and devices, without the need for calculations. Diagrams with the same function can be conceived of for ions in structures and devices with ionic conductivity. Such diagrams could be especially useful for describing the dynamic behaviour of systems with both ionic and electronic conductivity, such as devices incorporating semionic materials. We show how such diagrams can be constructed and indicate how their use can add to our understanding of the behaviour of mixed conductors through qualitative descriptions of processes that occur in them. We illustrate their use for a few specific cases, such as electrochromic and light emitting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

6. References and Notes

  1. S.M. Sze, “Physics of Semiconductor Devices”, Publishers: J. Wiley&Sons, New York 1981; N.W. Ashcroft, N.D. Mermin, “Solid State Physics”, Publishers: Holt, Rinehart & Winston, Philadelphia 1976.

    Google Scholar 

  2. D. Cahen et al.., Science258, 271 (1992). -b- E.M. Pell, J. Appl. Phys.31, 291 (1960). -c- L. Chernyak, V. Lyakhovitskaya and D.Cahen, Appl. Phys. Lett.66, 709 (1995). -d C.S. Fuller, J.C. Severiens, Phys. Rev.96, 21 (1954). -e- W. Weppner, J. Solid State Chem.20, 305 (1977). -f- W. Weppner, in Materials for advanced batte ries; D.W. Murphy, J. Broadhead and B.C.H. Steele, Ed. (Plenum, NY, 1980); pp. 269–274.

    CAS  Google Scholar 

  3. J.F. Guillemoles, D. Cahen, J. Cryst.Res. Technol.31, 147 (1996).

    Google Scholar 

  4. J.O. Kessler, B.E. Tompkins, J. Blanc, Solid State Electronics6, 297 (1963). Processes in Solid State Ionics”; M. Kleitz and J. Dupuy eds., (Reidel, Dordrecht, 1976), p.8; J. Maier, Angew. Chemie32, 313 (1993).

    CAS  Google Scholar 

  5. I. Riess, Solid State Ionics69, 43 (1994).

    CAS  Google Scholar 

  6. M. Klingler, W.F. Chu, W. Weppner, Sol. En. Mat. Sol. Cells39, 247 (1995).

    CAS  Google Scholar 

  7. J. M. Blakely, in “Electrode Processes in Solid State Ionics”; M. Kleitz and J. Depuy, eds. (Reidel, Dordrecht, 1976), p. 83.

    Google Scholar 

  8. C. Desportes, M. Duclos, P. Fabry, J. Fouletier, A. Hammou, M. Kleitz, E. Siebert, J.L. Souquet, “Electrochimie des Solides”, PUG, Grenoble 1994, Chap 4; -b- J. Maier, Solid State Ionics,70/71, 43 (1994). -c- J. Maier, Ber. Bunsenges. Phys. Chem.89, 355 (1985).

    Google Scholar 

  9. We will suppose hereafter that the system is sufficiently close to equilibrium so that such quantities can be locally defined; this seems to be the case in most systems under investigation. This assumption is the basis for the theory of irreversible processes, as given, for instance, by S.R. De Groot and P. Mazur, “Non-Equilibrium Thermodynamics”, North Holland, Amsterdam 1962.

    Google Scholar 

  10. H.D. Wiemhoefer, Solid State Ionics75 (1995) 167

    CAS  Google Scholar 

  11. to be published

  12. This approximation may break down whell a deep impurity level crosses the Fermi level, beause for some of those deep levels the defects that cause them can have large time constants, compared to other relevant relaxation times in the system.

  13. F.A. Kröger, “The Chemistry of Imperfect Crystals”, North Holland, Amsterdam 1974.

    Google Scholar 

  14. I. Riess, Solid State Ionics75, 59 (1995); I. Riess, Phys. Rev B35, 5740 (1987).

    Article  CAS  Google Scholar 

  15. R.B. Goldner et al., Solid Sate Ionics70/71, 613 (1994).

    Google Scholar 

  16. C.G. Granqvist, Sol. Energy Mat. Sol. Cells32, 369 (1994).

    CAS  Google Scholar 

  17. G.J. Ashwell, I. Sage, C. Trundle, in “Molecular Electronics”, G.J. Ashwell Ed., Research Studies Press Ltd., J. Wiley&Sons, NY 1992, p2.

    Google Scholar 

  18. Q. Pei, G. Yu, C. Zhang, Y. Yang, A.J. Heeger, Science69, 1086 (1995).

    Google Scholar 

  19. G.L. Araujo, A. Marti, Sol. En. Mat. & Solar Cells33, 213 (1994).

    Google Scholar 

  20. J.F. Guillemoles, D. Cahen, 10th International Conference on Ternary and Multinary Compounds, Stuttgart, Sept. 1995.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillemoles, J.F., Cahen, D. Qualitative modelling of mixed ionic/electronic devices with ion potential level diagrams. Ionics 2, 143–154 (1996). https://doi.org/10.1007/BF02375808

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375808

Keywords

Navigation