Skip to main content
Log in

Mixed-conductors with either cation or anion insertion

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

It has been known for some 25 years that charge can be stored in some important battery electrodes by the insertion of ionic species from the electrolyte. Insertion reactions play an especially important role in current versions of lithium batteries, where lithium cations are typically the inserted species in both electrodes. Hydrogen cations (protons) are the guest species during the operation of both the Ni(OH)2/NiOOH electrode and the “MnO2” electrode in aqueous systems.

Whereas most attention has been given to materials in which the guest species are cations, it is also possible to have anion insertion into some crystal structures. Materials in which the structure can accommodate either cations or anions are especially interesting.

The hexacyanometallates, with variations of the cubic ReO3 type structure with rather large intercell windows, represent an interesting example. They can accommodate a wide variety of guest ions of both charges. Cations can be inserted into the structure at relatively low potentials, and anions can be inserted at more positive potentials. A number of interesting features and properties of this family of materials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

16. References

  1. M.S. Whittingham, R.A. Huggins, J. Chem. Phys.54, 414 (1971).

    Article  CAS  Google Scholar 

  2. M.S. Whittingham, R.A. Huggins, in:Fast Ion Transport in Solids (W. v. Gool, Ed.) North-Holland, 1973, p. 645.

  3. B. C. H. Steele, in:Fast Ion Transport in Solids (W. v. Gool, Ed.) North-Holland, 1973, p. 103.

  4. M.B. Armand, in:Fast Ion Transport in Solids (W. v. Gool, Ed.) North-Holland, 1973, p. 665.

  5. D.T. Ferrell, W.C. Vosburgh, J. Electrochem. Soc.98, 334 (1951).

    CAS  Google Scholar 

  6. R.S. Johnson, W.C. Vosburgh, J. Electrochem. Soc.100, 471 (1953).

    CAS  Google Scholar 

  7. J.P. Brenet, 8th CITCE, Butterworth, Madrid, 1958, p. 394.

  8. A. Kozawa, J.F. Yeager, J. Electrochem. Soc.112, 959 (1965).

    CAS  Google Scholar 

  9. A. Kozawa, R.A. Powers, J. Electrochem. Soc.113, 870 (1966).

    CAS  Google Scholar 

  10. A. Kozawa, R.A. Powers, Electrochem. Technology5, 535 (1967).

    CAS  Google Scholar 

  11. A. Kozawa, R.A. Powers, J. Chem. Ed.49, 587 (1972).

    CAS  Google Scholar 

  12. M.S. Whittingham, J. Electrochem. Soc.123, 315 (1976).

    CAS  Google Scholar 

  13. L.B. Ebert, in:Annual Review of Materials Science (R.A. Huggins, Ed.) Annual Reviews, Inc., 1976, vol.6, p. 181.

    Article  CAS  Google Scholar 

  14. R. Yazami, P. Touzain, J. Power Sources9, 365 (1983).

    CAS  Google Scholar 

  15. T. Nagaura, K. Tozawa, Prog. in Batteries & Solar Cells9, 209 (1990).

    CAS  Google Scholar 

  16. P.J. Nigrey, A.G. MacDiarmid, A.J. Heeger, J. Chem. Soc. Chem. Commun., 578 (1979).

  17. A.G. MacDiarmid, A.J. Heeger, Synthetic Metals1, 101 (1979/80).

    Google Scholar 

  18. P.J. Nigrey, D. MacInnes, D.P. Nairns, A.G. MacDiarmid, A.J. Heeger, J. Electrochem. Soc.128, 1651 (1981).

    CAS  Google Scholar 

  19. A. Rudge, J. Davey, S. Gottesfeld, J.P. Ferraris, Proc. Symp. on New Sealed Rechargeable Batteries and Supercapacitors (B.M. Barnett, E. Dowgiallo, G. Halpert, Y. Matsuda and Z. Takehara, Eds.) Electrochem. Soc., 1993, p. 74.

  20. S.-K. Joo, I.D. Raistrick, R.A. Huggins, Materials Research Bulletin20, 897 (1985).

    CAS  Google Scholar 

  21. S.-K. Joo, I.D. Raistrick, R.A. Huggins, Materials Research Bulletin20, 1265 (1985).

    CAS  Google Scholar 

  22. S.-K. Joo, I.D. Raistrick, R.A. Huggins, Solid State Ionics17, 313 (1985).

    Article  CAS  Google Scholar 

  23. S.-K. Joo, I.D. Raistrick, R.A. Huggins, Solid State Ionics18/19, 592 (1986).

    Article  Google Scholar 

  24. Y. Inaguma, et al., Solid State Commun.86, 689 (1993).

    Article  CAS  Google Scholar 

  25. H. Kawai, J. Kuwano, J. Electrochem. Soc.141, L78 (1994).

    Google Scholar 

  26. Y. Inaguma, L. Chen, M. Itoh, T. Nakamura, Solid State Ionics70/71, 196, (1994); M. Itoh, Y. Inaguma, W.-H. Jung, L. Chen, T. Nakamura70/71, 203 (1994).

    Article  Google Scholar 

  27. Y. Inaguma, J. Yu, Y.-J. Shan, M. Itho, T. Nakamura, J. Electrochem. Soc.142, L8 (1995).

    Google Scholar 

  28. A.D. Robertson, S. Garcia Martin, A. Coats, A. R. West, J. Mater. Chem.5, 1405 (1995).

    CAS  Google Scholar 

  29. P. Birke, S. Scharner, R.A. Huggins, W. Weppner, J. Electrochem. Soc.144, (1997).

  30. M.B. Robin, P. Day, Adv. Inorg. Chem. Radiochem.10, 247 (1967).

    CAS  Google Scholar 

  31. J. Brown, Philos. Trans.33, 17 (1724).

    Google Scholar 

  32. H.B. Weiser,Inorganic Colloid Chemistry,Vol 3,Colloidal Salts, John Wiley & Sons, New York, 1938, p. 343 ff.

    Google Scholar 

  33. J.F. Keggin, F.D. Miles, Nature137, 577 (1936).

    CAS  Google Scholar 

  34. J.F. Duncan, P.W.R. Wrigley, J. Chem. Soc., 1120 (1963).

  35. D. Knapp, Kent State University, PhD Thesis (1985).

  36. R.E. Wilde, S.N. Ghosh, B.J. Marshall, Inorg. Chem.9, 2512 (1970).

    Article  CAS  Google Scholar 

  37. L.M. Siperko, T. Kuwana, J. Electrochem. Soc.130, 396 (1983).

    CAS  Google Scholar 

  38. A.L. Crumblis, P.S. Lugg, N. Morosoff, Inorg. Chem.23, 4701 (1984).

    Google Scholar 

  39. M.B. Armand, M.S. Whittingham, R.A. Huggins, Mat. Res. Bull.7, 101 (1972).

    Article  CAS  Google Scholar 

  40. A. Ludi, Chemie in unserer Zeit22, 123 (1988).

    Article  CAS  Google Scholar 

  41. H. Kellawi, D.R. Rosseinsky, J. Electroanal. Chem.131, 373 (1982).

    Article  CAS  Google Scholar 

  42. K. Itaya, T. Ataka, S. Toshima, T. Shinohara, J. Phys. Chem.86, 2415 (1982).

    Article  CAS  Google Scholar 

  43. T. Oi, in:Annual Review of Materials Science (R.A. Huggins, Ed.) 1986, vol.16, p. 185.

    Article  CAS  Google Scholar 

  44. K. Itaya, T. Ataka, S. Toshima, J. Am. Chem. Soc.104, 4767 (1982).

    CAS  Google Scholar 

  45. I.D. Raistrick, N. Endow, S. Lewkowitz, R.A. Huggins, J. Inorg. Nucl. Chem.39, 1779 (1977).

    Article  CAS  Google Scholar 

  46. R. Rigamonti, Gazz. Chim. Ital67, 137, 146 (1937).

    CAS  Google Scholar 

  47. R. Rigamonti, Gazz. Chim. Ital.68, 803 (1938).

    CAS  Google Scholar 

  48. A. Xidix, V.D. Neff, J. Electrochem. Soc.138, 3637 (1991).

    Google Scholar 

  49. K. Tennakone, W.G.O. Dharmaratne, Phys. C, Solid State Physics16, 5633 (1983).

    CAS  Google Scholar 

  50. K. Honda, H. Hayashi, J. Electrochemical Soc.134, 1330 (1987).

    CAS  Google Scholar 

  51. V.D. Neff, J. Electrochem. Soc.132, 1382 (1985).

    CAS  Google Scholar 

  52. K. Ogura, S. Yamasaki, J. Chem. Soc. Faraday Trans.81, 267 (1985).

    CAS  Google Scholar 

  53. M.K. Carpenter, R.S. Conell, J. Electrochem. Soc.137, 2464 (1990).

    CAS  Google Scholar 

  54. K. Itaya, H. Akahoshi and S. Toshima, J. Electrochem. Soc.129, 1498 (1982).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huggins, R.A. Mixed-conductors with either cation or anion insertion. Ionics 3, 379–389 (1997). https://doi.org/10.1007/BF02375714

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375714

Keywords

Navigation