Skip to main content
Log in

Prostaglandins and bone cell activity

  • Review
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Reference

  1. Rodan, G.A., and Martin, T.J.: Role of osteoblasts in hormonal control of bone resorption—a hypothesis. Calcif. Tissue Int., 33, 349–351, 1981

    CAS  PubMed  Google Scholar 

  2. Silve, C.M., Hradek, G.T., Jones, A.L., and Arnaud, C.D.: Parathyroid hormone receptor in intact embryonic chick bone: characterization and cellular localization. J. Cell Biol. 94, 379–386, 1982

    Article  CAS  PubMed  Google Scholar 

  3. Manolagas, S.C., Haussler, M.R., and Deftos, L.J.: 1,25-Dihydroxyvitamin D3 receptor-like macromolecule in rat osteogenic sarcoma cell lines. J. Biol. Chem., 255, 4414–4417, 1980

    CAS  PubMed  Google Scholar 

  4. Partridge, N.C., Frampton, R.J., Eisman, J.A., Michelangeli, V.P., Elms, E., Bradley, T.R., and Martin, T.J.: Receptors for 1,25(OH)2vitamin D3 enriched in cloned osteoblast-like rat osteogenic sarcoma cells. FEBS Lett., 115, 139–142, 1980

    Article  CAS  PubMed  Google Scholar 

  5. Chambers, T.J.: The cellular basis of bone resorption. Clin. Orthop., 151, 283–293, 1981

    Google Scholar 

  6. Narbaitz, R., Stumpf, W.E., Sar, M., Haung, S., and Deluca, H.F.: Autoradi ographic localization of target cells for 1α, 25-Int., 35, 177–182, 1983

    CAS  Google Scholar 

  7. Testa, N.G., Allen, T.D., Lajtha, L.G., Onions, D., and Jarret, O.: Generation of osteoclasts in vitro. J. Cell Sci., 47, 127–137, 1981

    CAS  PubMed  Google Scholar 

  8. Burgar, E.H., Van der Meer, J.W.M., Van de Gevel, J.S., Gribnan, J.C., Thesingh, C.W., and Van Furth, R.: In vitro formation of osteoclasts from long-term cultures of bone marrow mononuclear phagocytes. J. Exp. Med., 156, 1604–1614, 1982

    Google Scholar 

  9. Ibbotson, K.J., Roodman, G.D., McManus, L.M., and Mundy, G.R.: Identification and characterization of osteoclast-like cells and their progenitors in cultures of feline marrow mononuclear cells. J. Cell Biol., 99, 471–480, 1984

    Article  CAS  PubMed  Google Scholar 

  10. Roodman, G.D., Ibbotson, K.J., MacDonald, B.R., Kuehl, T.J., and Mundy, G.R.: 1,25 Dihydroxyvitamin D3 causes formation of multinucleated cells with several osteoclast characteristics in cultures of primate marrow. Proc. Natl. Acad. Sci. USA, 82, 8213–8217, 1985

    CAS  PubMed  Google Scholar 

  11. Fuller, K., and Chambers, T.J.: Generation of osteoclasts in cultures of rabbit bone marrow and spleen cells. J. Cell. Physiol., 132, 441–452, 1987

    Article  CAS  PubMed  Google Scholar 

  12. Mundy, G.R., and Roodman, G.D.: Osteoclast ontogeny and functions. In: Bone and Mineral Research. Annual 5 (W.A. Peck, ed.) Elsevier Science Publishers B.V., Amsterdam, pp.209–279, 1987

    Google Scholar 

  13. Klein, D.C., and Raisz, L.G.: Prostaglandings: Stimulation of bone resorption in tissue culture. Endocrinology, 86, 1436–1440, 1970

    CAS  PubMed  Google Scholar 

  14. Von Euler, U.S.: Zur kenntnis der pharmakologischen wirkungen von nativsekreten and extrakten mannlicher accessorischer geschlechtsdusen. Arch. Exp. Path. Pharmakol., 175, 78–84, 1934

    Google Scholar 

  15. Flower, R.J., and Blackwell, G.J.: The importance of phosholipase A2 in prostaglandin biosynthesis. Biochem. Pharmacol., 25, 285–291, 1976

    Article  CAS  PubMed  Google Scholar 

  16. Bell, R.L., Stanford, N., Kennerly., D.A., and Majerus, P.W.: Diglyceride lipase: A pathaway for arachidonate release from human platelets. In: Advances in Prostaglandin and Thromboxane Research. Vol. 6 (B. Samuelsson, P.W. Ramwell and R. Paoletti, eds.) Raven Press, New York, pp.219–224, 1980

    Google Scholar 

  17. Ogino, N., Miyamoto, T., Yamamoto, S., and Hayaishi, O.: Prostaglandin endoperoxide E isomerase from bovine vesicular gland microsomes, a glutathione-requiring enzyme. J.Biol. Chem., 252, 890–895, 1977

    CAS  PubMed  Google Scholar 

  18. Wlodawer, P., Kindahl, H., and Hamberg, M.: Biosynthesis of prostaglandin F2α from arachidonic acid and prostaglandin endoperoxides in the uterus. Biochim. Biophys. Acta, 431, 603–614, 1976

    CAS  PubMed  Google Scholar 

  19. Gryglewshi, R.J., Bunting, S., Moncada, S., Flower, R.J., and Vane, J.R.: Arterial walls are protected against deposition of platelet thrombine by a substance (prostaglandin X) which they make from prostaglandin endoperoxides. Prostaglandins, 12, 685–713, 1976

    Google Scholar 

  20. Yoshimoto, T., Yamamoto, S., Okuma, M., and hayaishi, O.: Solubilization and resolution of thromboxane synthesizing system from microsomes of bovine blood platelets. J. Biol. Chem., 252, 5871–5874, 1977

    CAS  PubMed  Google Scholar 

  21. Samuelsson, S., Goldyne, M., Granström, E., Hamberg, M., Hammarström, S., and Malmsten, C.: Postaglsmdins and thromboxanes. Ann. Rev. Biochem., 47, 997–1029, 1978

    CAS  PubMed  Google Scholar 

  22. Raisz, L.G., Vanderhoek, J.Y., Simmons, H.A., Kream, B.E., and Nicolaou, K.C.: Prostaglandin synthesis by fetal rat bone in vitro: evidence for a role of prostacyclin. Prostaglandins, 17, 905–914, 1979

    Article  CAS  PubMed  Google Scholar 

  23. Voelkel, E.F., Tashjian A.H., Jr., and Levine, L.: Cyclooxygenase products of arachidonic acid metabolism by mouse bone in organ culture. Biochim. Biophys. Acta, 620, 418–428, 1980

    CAS  PubMed  Google Scholar 

  24. Needleman, P., Kulkarni, P.S., and Raz, A.: Coronary tone modulation: formation and actions of prostaglandins, endoperoxides, and thromboxanes. Science, 195, 409–412, 1977

    CAS  PubMed  Google Scholar 

  25. Poce-Asiak, C.R., and Romgaraj, G.: The 6-ketoprostoaglandin F1α pathway in the lamb ductus arteriosus. Biochim. Biophys. Acta, 486, 583–585, 1977

    Google Scholar 

  26. Dusting, G.J., Moncada, S., and Vane, J.R.: Prostacyclin (PGX) is the endogenous metabolite responsible for relaxation of coronary arteries induced by arachidonic acid. Prostaglandins., 13, 3–15, 1977

    Article  CAS  PubMed  Google Scholar 

  27. Moncada, S., Gryglewski, Bunting, S., and Vane, J.R.: An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature, 263, 663–665, 1976

    Article  CAS  PubMed  Google Scholar 

  28. Nolan, R.D., Partridge, N.C., Godfrey, H.M., and Martin, T.J.: Cyclo-oxygenase products of arachidonic acid metabolism in rat osteoblasts. Calcif. Tissue Int., 35, 294–297, 1983

    CAS  PubMed  Google Scholar 

  29. Rodan, S.B., Rodan., G.A., Simmons, H.A., Walenga, R.W., Feinstein, M.B., and Raise, L.G.: Bone resorptive factor produced by osteosarcoma cells with osteoblastic features is PGE2. Biochem. Biophys. Res. Commun., 102, 1358–1365, 1981

    Article  CAS  PubMed  Google Scholar 

  30. Rodan, S.B., Rodan, G.A., Simmons, H.A., Walenga, R.W., Feinstein, M.B., and Raisz, L.G.: Bone resorptive activity in conditioned medium from r at osteosarcoma cell line. In: Prostaglandins and Cancer: First International Conference (R. Bockman and T.J. Powles, eds.) Alan R. liss, New York, pp.573–578, 1982

    Google Scholar 

  31. Kodama, H., Amagai, Y., Suda, H., Kasai, S., and Yamamoto, S.: Establishment of a clonal osteogenic cell line from newborn mouse calvaria. Jpn. J. Oral Biol., 23, 899–901, 1981

    Google Scholar 

  32. Suda, H., Kodama, H., Amagai, Y., Yamamoto, S., and Kasai, S.: In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell Biol., 96, 191–198, 1983

    Google Scholar 

  33. Kurihara, N., Ishizuka, S., Kiyoki, M., Hakeda, Y., Ikeda, K., and Kumegawa, M.: Effects of 1,25-dihydroxyvitamin D3 on osteoblastic MC3T3-E1 cells. Endocrinology, 118, 940–947, 1986

    CAS  PubMed  Google Scholar 

  34. Nakatani, Y., Tsunoi, M., Hakeda, Y., Kurihara, N., Fujita, K., and Kumegawa, M.: Effects of parathyroid hormone on cAMP production and alkaline phosphatase activity in osteoblastic clone MC3T3-E1 cells. Biochem. Biophys. Res. Commun. 123, 894–898, 1984

    Article  CAS  PubMed  Google Scholar 

  35. Hiramatsu, M., Kumegawa, M., Hatakeyama, K., Yajima, T., Minami, N., and Kodama, H.: Effect of epidarmal growth factor on collagen synthesis in osteoblastic cells derived from newborn mouse calvaria. Endocrinology, 111, 1810–1816, 1982

    CAS  PubMed  Google Scholar 

  36. Noda, M., and Rodan, G.A.: Typeβ-transforming growth factor inhibits proliferation and expression of alkaline phosphatase in murine osteoblast-like cells. Biochem. Biophys. Res. Commun., 140, 56–65, 1986

    Article  CAS  PubMed  Google Scholar 

  37. Linkhart, S., Mohan, S., Linkhart, T., Kumegawa, M., and Baylink, D.J.: Human sheletal growth factor stimulates collagen synthesis and inhibits proliferation in a clonal osteoblast cell line (MC3T3-E1). J. Cell. Physiol., 128, 307–312, 1986

    Article  CAS  PubMed  Google Scholar 

  38. Yokota, K., Kusaka, M., Ohshima, T., Yamamoto, S., Kurihara, N., Yoshino, T., and Kumegawa, M.: Stimulation of prostsglandin E2 synthesis in cloned osteoblastic cells of mouse (MC3T3-E1) by epidermal growth factor. J. Biol. Chem., 261, 15410–15415, 1986

    CAS  PubMed  Google Scholar 

  39. Van der Bosch, H.: Intracellular phospholipase A. Biochim. Biophys. Acta, 604, 191–246, 1980

    PubMed  Google Scholar 

  40. Russmusen, H.: Cell communication, calcium ion, and cyclic adenosine monophosphate. Science, 170, 404–412, 1970

    Google Scholar 

  41. Majerus, P.W., Neufeld, E.J., and Wilson, D.B.: Production of phosphoinositide-derived messengers. Cell, 37, 701–703, 1984

    Article  CAS  PubMed  Google Scholar 

  42. Lapetina, E.G., Schmitges, C.J., Chandrabose, K., and Cuatrecasus, P: Cyclic adenosine 3′, 5′-monophosphate and prostacyclin inhibit membrane phosholipase activity in platelets. Biochem. Biophys. Res. Commun., 76, 828–835, 1977

    Article  CAS  PubMed  Google Scholar 

  43. Burke, G., Chang, L.L., and Szabo, M.: Thyrotropin and cyclic nucleotide effects on prostaglandin levels in isolated thyroid cell. Science, 180, 872–875, 1973

    CAS  PubMed  Google Scholar 

  44. Laychock, S.G., Warner, W., and Rubin, R.P.: Further studies on the mechanisms controlling prostaglandin biosynthesis in the cat adrenal cortex: the role of calcium and cyclic AMP. Endocrinology, 100, 74–81, 1977

    CAS  PubMed  Google Scholar 

  45. Feher, I., and Gidali, J.: Prostaglandin E2 as stimulator of haemopoietic stem cell proliferation. Nature, 247, 550–551, 1974

    CAS  PubMed  Google Scholar 

  46. Kusaka, M., Oshima, T., Yokota, K., Yamamoto, S., and Kumegawa, M.: Epinephrin-stimulating prostaglandin E2 production by clonal osteoblastic cells. Seikagaku (in Japanese), 59, 944, 1987

    Google Scholar 

  47. Dietrich, J.W., Goodson, J.M., and Raisz, L.G.: Stimulation of bone resorption by various prostaglandins in organ culture. Prostaglandins, 10, 231–240, 1975

    Article  CAS  PubMed  Google Scholar 

  48. Raisz, L.G., Dietrich, J.W., Simmons, H.A., Seyberth, H.W., Hubbard, W., and Oates, J.A.: Effect of prostaglandin endoperoxides and metabolites on bone resorption in vitro. Nature, 267, 532–534, 1977

    Article  CAS  PubMed  Google Scholar 

  49. Tashjian, A.H., Jr., Tice, J.E., and Sides, K.: Biological activities of prostaglandin analogues and metabolites on bone in organ culture. Nature, 266, 645–646, 1977

    Article  CAS  PubMed  Google Scholar 

  50. Sakamoto, S., Sakamoto, M., Goldhaber, M.J., and Glimcher, M.J.: Collagenase activity and morphological and chemical bone resorption induced by prostaglandin E2 in tissue culture. Proc. Soc. Exp. Biol. Med., 161, 99, 1979

    CAS  PubMed  Google Scholar 

  51. Chambers, T.J. and Dunn, C.J.: Pharmacological control of osteoclastic motility. Calcif. Tissue Int., 35, 566–570, 1983

    CAS  PubMed  Google Scholar 

  52. Chambers, T.J., McSheehy, P.M.J., Thomson, B.M., and Fuller, K.: The effect of calcium-regulating hormones and prostaglandins on bone resorption by osteoclasts disaggregated from neonatal rabbit bones. Endocrinology, 116, 234–239, 1985

    CAS  PubMed  Google Scholar 

  53. Tashjian, A.H., Jr., and Levine, L.: Epidermal growth factor stimulates prostaglandin production and bone resorption in cultured mouse calvaria. Biochem. Biophys. Res. Commun., 85, 966–975, 1978

    CAS  PubMed  Google Scholar 

  54. Ibbotson, K.J., Harrod, J., Gowen, M., D'Souza, S., Winkler, M., Derynak, R., and Mundy, G.R.: Human recombinant transforming growth factor (TGF) alpha stimulates bone resorption and inhibits bone formation in vitro. Proc. Natl. Acad. Sci. USA, 83, 2228–2232, 1986

    CAS  PubMed  Google Scholar 

  55. Tashjian, A.H., Jr., Voelkel, E.F., Lazzaro, M., Singer, F.R., Roberts, A.B., Derynck, R., Winkler, M.E., and Levine, L.: Alpha and beta transforming growth factors stimulate prostaglandin production and bone resorption in cultured mouse calvaria. Proc. Natl. Acad. Sci. USA., 82, 4535–4538, 1985

    CAS  PubMed  Google Scholar 

  56. Tashjian, A.H., Jr., Hohmann, E.L., Antroniades, H.N., and Levine, L.: Platelet derived growth factor stimulates bone resorption via a prostaglandin medicated mechanism. Endocrinology, 111, 118–124, 1982

    CAS  PubMed  Google Scholar 

  57. Raisz, L.G., and Koolemans-Beynen, A.R.: Inhibition of bone collagen synthesis by prostaglandin E2 in organ culture. Prostaglandins, 8, 377–385, 1974

    Article  CAS  PubMed  Google Scholar 

  58. Dietrich, J.W., Canalis, E.M., Maina, D.M., and Raisz, L.G.: Hormonal control of bone collagen synthesis in vitro: effects of parathyroid hormone and calcitonin. Endocrinology, 98, 943–949, 1976

    CAS  PubMed  Google Scholar 

  59. Chyun, Y.S. and Raisz, L.G.: Stimulation of bone formation by prostaglandin E2. Prostaglandins, 27, 97–103, 1984

    Article  CAS  PubMed  Google Scholar 

  60. Robinson, R.: The possible significance of hexosephosphonic esters in ossification. Biochem. J., 17, 286–293, 1923

    Google Scholar 

  61. Doty, S.B., and Schofield, B.H.: Enzyme histochemistry of bone and cartilage cells. Prog. Histochem. Cytochem., 8, 1–38, 1976

    CAS  PubMed  Google Scholar 

  62. Hakeda, Y., Nakatani, Y., Hiramatsu, M., Kurihara, N., Tsunoi, M., Ikeda, E., and Kumegawa, M.: Inductive effects of prostaglandins on alkaline phosphatase in osteoblastic cells, clone MC3T3-E1. J. Biochem. 97, 97–104, 1985

    CAS  PubMed  Google Scholar 

  63. Goldstein, D.J., Rogers, C.E., and Harris, H.: Expression of alkaline phospohatase loci in mammalian tissue. Proc. Natl. Acad. Sci. USA, 77, 2857–2860, 1980

    CAS  PubMed  Google Scholar 

  64. Hakeda, Y. Yoshino, T., Nakatani, Y., Kurihara, N., Maeda, N., and Kumegawa, M.: Prostaglandin E2 stimulates DNA synthesis by a cAMP-independent pathway in osteoblastic clone MC3T3-E1 cells. J. Cell. Physiol., 128, 155–161, 1986

    Article  CAS  PubMed  Google Scholar 

  65. Feyen, J.H.M., van der Plas, A.A., Löwik C.W.G.M., and Nijweide, P.J.: Effects of exogenous prostanoids on the proliferation of osteoblast-like cells in vitro. Prostaglandins. 30, 827–840, 1985

    Article  CAS  PubMed  Google Scholar 

  66. Pledger, W.J., Stiles, C.D., Antoniades, H.N., and Scher, C.D.: An ordered sequence of events is required before BALB/c-3T3 cells become committed to DNA synthesis. Proc. Natl. Actl. Acad. Sci. USA, 75, 2839–2843, 1978

    CAS  Google Scholar 

  67. Hakeda, Y., Nakatani, Y., Kurihara, N., Ikeda, E., Maeda, N., and Kumegawa, M.: Prostaglandin E2 stimulates collagen and non-collagen protein synthesis and prolyl hydroxylase activity in osteoblastic clone MC3T3-E1 cells. Biochem. Biophys. Res. Commun., 126, 340–345, 1985

    Article  CAS  PubMed  Google Scholar 

  68. Morita, I. and Murota, S: Relationship between calcification and PGE2 in osteoblastic cells, MC3T3-E1. J. Bone & Mineral Metabo., 5, 98, 1987

    Google Scholar 

  69. Morita. I. and Murota, S: Relationship between calcification and archidonic acid metabolism in osteoblastic cell line (MC3T3-E1). Jpn. J. Oral Biol., 29, 133, 1987

    Google Scholar 

  70. Chase, L.R., and Aurbach, G.D.: The effect of parathyroid hormone on the concentration of adenosine 3′, 5′-monophosphate in skeletal tissue in vitro. J. Biol. Chem., 245, 1520–1526, 1970

    CAS  PubMed  Google Scholar 

  71. Klein, D.C., and Raisz, L.G.: Role of adenosine-3′, 5′-monophosphate in the hormonal regulation of bone resorption: studies with cultured fetal bone. Endocrinology, 89, 818–826, 1971

    CAS  PubMed  Google Scholar 

  72. McSheehy, P.M.J., and Chambers, T.J.: Osteoblastic cells mediate osteoclastic responsiveness to parathyroid hormone. Endocrinology, 118, 824–828, 1986

    CAS  PubMed  Google Scholar 

  73. McSheehy, P.M.J., and Chambers, T.J.: Osteoblastlike cells in the presence of parathyroid hormone release soluble factor that stimulates osteoclastic bone resorption. Endocrinology, 119, 1654–1659, 1986

    CAS  PubMed  Google Scholar 

  74. Partridge, N.C., Alcorn, D., Michelangeli, V.P., Kemp, B.E., Ryan, G.B., and Martin, T.J.: Functional properties of hormonally responsive cultured normal and malignant rat osteoblastic cells. Endocrinology, 108, 213–219, 1981

    CAS  PubMed  Google Scholar 

  75. Partridge, N.C., Kemp, B.E., Livesay, S.A., and Martin, T.J.: Activity ratio measurements reflect intracellular activation of adenosine 3′, 5′-monophosphate-dependent protein kinase in osteoblasts. Endocrinology, 111, 178–183, 1982

    CAS  PubMed  Google Scholar 

  76. Partridge, N.C., Kemp, B.E., Veroni, M.C., and Martin, T.J.: Activation of adenosine 3′, 5′-monophoshate-dependent protein kinase in normal and malignant bone cells by parathyroid hormone, prostaglandin E2 and prostacyclin. Endocrinology, 108, 220–225, 1981

    CAS  PubMed  Google Scholar 

  77. Lohmann, S.M., and Walter, U.: Regulation of the cellular and subcellular concentrations and distribution of cyclic nucleotide-dependent protein kinases. In: Advances in Cyclic Nucleotide and Protein Phosphorylation Research, Vol. 18 (P. Greengard, and G.A. Robinson, eds) Raven Press, New York, pp.63–118, 1984

    Google Scholar 

  78. Livesey, S.A., Kemp, B.E., Re, C.A., Partridge, N.C., and Martin, T.J.: Selective hormonal activation of cyclic AMP-dependent protein kinase isozymes in normal and malignant osteoblasts. J. Biol. Chem., 257, 14983–14987, 1982

    CAS  PubMed  Google Scholar 

  79. Farr, D., Pochal, W., Brown, M., Shapiro, E., Weinfeld, N., and Dziak, R.: Effect of prostaglandins on rat calvarial bone-cell calcium. Arch. Oral Biol., 29, 885–8891, 1984

    CAS  PubMed  Google Scholar 

  80. Bhat, S.V., Bajwa, B.S., Dornauer, H., and de Sonya, W.J.: Structures and stereo-chemistry of new labdane diterpenoids fromColeus forskolii brig. Tetrahedron Lett., 19, 1669–1672, 1977

    Google Scholar 

  81. Seamon, K.B., and Daly, J.W.: Forskolin: Its biological and chemical properties. In: Adrances in Cyclic Nucleotide and Protein Phosphorylation Research., Vol. 20 (P. Greengard, and G.A. Robison, eds) Raven Press, New York, pp.1–150, 1986

    Google Scholar 

  82. Hakeda, Y., Ikeda, eE, Kurihara, N., Nakatani, Y., Maeda, N., and Kumegawa, M.: Induction of osteoblastic cell differentiation by forskolin. Stimulation of cyclic AMP production and alkaline phosphatase activity. Biochim. Biophys. Acta, 838, 49–53, 1985

    CAS  PubMed  Google Scholar 

  83. Hopkins, N.K., Lin, A.H., and Gorman, R.R.: Evidence for mediation of acetyl glyceryl ester phosphorylchorine stimulation of adenosine 3′, 5′-(cyclic) monophosphate levels in human polymorphonuclear leukocytes by leukotriene B4. Biochim. Biophys. Acta, 763, 276–283, 1983

    CAS  PubMed  Google Scholar 

  84. Kakiuchi, S., Yamasaki, R., and Nakajima, H.: Properties of a heat-stable phosphodiesterase activating factor isolated from brain extract: studies on cyclic 3′, 5′-nucleotide phosphodiesterase II. Proc. Jap. Acad., 46, 587–592, 1970

    CAS  Google Scholar 

  85. Hakeda, Y., Hotta, T., Kurihara, N., Ikeda, E., Maeda, N., Yagyu, Y., and Kumegawa, M.: Prostaglandin E1 and F2α stimulate differentiation and proliferation, respectively, of clonal osteoblastic MC3T3-E1 cells by different second messengers in vitro. Endocrinology, 121, 1966–1974, 1987

    CAS  PubMed  Google Scholar 

  86. Katada, T., and Ui, M.: Islet-activating protein: enhanced insulin secretion and cyclic AMP accumulation in pancreatic islets due to activation of native calcium ionophore. J. Biol. Chem., 254, 469–479, 1979

    CAS  PubMed  Google Scholar 

  87. Fitzpatrick, L.A., Brandi, M.L., and Aurbach, G.D.: Prostaglandin F2α andα-adrenergic agonists regulate parathyroid cell function via the inhibitory guanine nucleotide regulatory protein. Endocrinology, 118, 2115–2119, 1986

    CAS  PubMed  Google Scholar 

  88. Watanabe, T., Umegaki, K., and Smith, W.L.: Association of a solubilized prostaglandin E2 receptor from renal medulla with a pertussis toxin-reactive guanine nucleotide regulatory protein. J. Biol. Chem., 261, 13430–13439, 1986

    CAS  PubMed  Google Scholar 

  89. Michelangeli V.P., Livesey, S.A., and Martin, T.J.: Effect of pertussis toxin on adenylate cyclase responses to prostaglandin E2 and calcitonin in human breast cancer cells. Biochem. J., 224, 371–377, 1984

    CAS  PubMed  Google Scholar 

  90. Berridge, M.J., and Irvine, R.F.: Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature, 312, 315–321, 1984

    Article  CAS  PubMed  Google Scholar 

  91. Takai, Y., Kikkawa, U., Kaibuchi, K., and Nishizuka, Y.: Membrane phospholipid metabolism and signal transduction for protein phosphorylation. In: Advances in Cyclic Nucleotide and Protein Phosphorylation Research, Vol. 18. (P. Greengard, and G.A. Robinson, eds.) Raven Press, New York, pp. 119–159, 1984

    Google Scholar 

  92. Hidaka, H., Inagaki, K., Kawamoto, S., and Sasaki, Y.: Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry, 23, 5036–5041, 1984

    Article  CAS  PubMed  Google Scholar 

  93. Tohmatsu, T., Hattori, H., Nagao, S., Ohki, K., and Nozawa, Y.: Reversal by protein kinase inhibitor of suppressive actions of phorbol-12-myristate-13 acetate on polyphosphoinositide metabolism and cytosolic Ca2+ mobilization in thrombin-stimulated human platelets. Biochem. Biophys. Res. Commun., 134, 868–875, 1986

    Article  CAS  PubMed  Google Scholar 

  94. Centrella, M., McCarthy, T.L., and Canalis, E.: Transforming growth factorβ is a bifunctional oregulator of replication and collagen synthesis in osteablast-enriched cell cultures from fetal rat bone. J. Biol. Chem., 262, 2869–2874, 1987

    CAS  PubMed  Google Scholar 

  95. Farley, J.R., and Baylink, D.J.: Purification of a skeletal growth factor from human bone. Biochemistry, 21, 3502–3507, 1982

    CAS  PubMed  Google Scholar 

  96. Canalis, E.M., Peck, W.A., and Raisz, L.G.: Stimulation of DNA and collagen synthesis by autobgous growth factor in cultured fetal rat calvaria. Science, 210, 1021–1023, 1980

    CAS  PubMed  Google Scholar 

  97. Canalis, E.M.: The hormonal and local regulation of bone formation. Endocr. Rev., 4, 64–77, 1983

    Google Scholar 

  98. Canalis, E.M.: Effect of insulin-like growth factor I on DNA and protein synthesis in cultured rat calvaria. J. Clin. Invest., 66, 709–719, 1980

    CAS  PubMed  Google Scholar 

  99. Kato, Y., Nomura, Y., Tsuji, M., Kinoshita, M., Ohmae, H., and Suzuki, F.: Somatomedin-like peptide(s) isolated from tetal bovine cartilage (cartilage-derived factor): isolation and some properties. Proc. Natl. Acad. Sci. USA, 78, 6831–6835, 1981

    CAS  PubMed  Google Scholar 

  100. Shen, V., Rifas, L., Kohler, G., and Peck, W.A.: Fetal rat chondrocytes sequentially elaborate separate growth- and differentiation-promoting peptides during their development in vitro. Endocrinology, 116, 920–925, 1985

    CAS  PubMed  Google Scholar 

  101. Sullivan, R., and Klagsbrum, M.: Purification of cartilage. derived growth factor by heparin affinity chromatography. J. Biol. Chem., 260, 2399–2403, 1985

    CAS  PubMed  Google Scholar 

  102. Seyedin, S.M., Thompson, A.Y., Bentz, H., Rosen, D.M., Mcpherson, J.M., Conti, A., Siegel, N.R., Galluppi, G.R., and Piez, K.A.: Cartilage-inducing factor-A.: apparent identity with transforming growth factor-β. J. Biol. Chem., 261, 5693–5695, 1986

    CAS  PubMed  Google Scholar 

  103. Seyedin, S.M., Thomas, T.C., Thompson, A.Y., Rosen, D.M., and Piez, K.A.: Purification and characterization of two cartilage-inducing factors from bovine demineralized bone. Proc. Natl. Acad. Sci. USA, 82, 2267–2271, 1985

    CAS  PubMed  Google Scholar 

  104. Urist, M.R., Huo, Y.K., Brownell, A.G., Hohl, W.M., Buyske, J., Lietze, A., Tempst, P., Hunkapiller, M., and DeLange, R.J.: Purification of bovine bone morphogenic protein by hydroxyapatite chromatography. Proc. Natl. Acad. Sci. USA, 81, 371–375, 1984

    CAS  PubMed  Google Scholar 

  105. Gowen, M., Meikle, M.C., and Reynold, J.J.: Stimulation of bone resorption in vitro by a non-prostanoid factor released by human monocytes in culture. Biochim. Biophys. Acta, 762, 471–474, 1983

    CAS  PubMed  Google Scholar 

  106. Bertolini, D.R., Nedwin, G.E., Bringman, T.S., Smith, D.D., and Mundy, G.R.: Stimulation of bone resorption and inhibition of bone formation in vitro by human tumor necrosis factors. Nature, 319, 516–518, 1986

    Article  CAS  PubMed  Google Scholar 

  107. Gray, P.W., Aggarwal, S.S., Benton, C.V., Bringman, T.S., Henzel, W.J., Jarrett, J.A., Leung, D.W., Moffat, B., Ng, P., Svedersky, L.P., Palladino, M.A., and Nedwin, G.E.: Cloning and expression of cDNA for human lymphotoxin, a lymphokine with tumor necrosis activity. Nature, 312, 721–724, 1984

    Article  CAS  PubMed  Google Scholar 

  108. Rifas, L., Shen, V., Mitchell, K., and Peck W.A.: Macrophage-derived growth factor for osteoblast-like cells and chondrocytes. Proc. Natl. Acad. Sci. USA, 81, 4558–4562, 1984

    CAS  PubMed  Google Scholar 

  109. Gowen, M., and Mundy, G.R.: Actions of recombinant interleukin-1, interleukin-2 and interferon gamma on bone resorption in vitro. J. Immunol., 136, 2478–2482, 1986

    CAS  PubMed  Google Scholar 

  110. Metcalf, D.: The granulocyte macrophage colony stimulating factor. Science, 229, 16–22, 1985

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Hakeda, Y., Kumegawa, M. Prostaglandins and bone cell activity. J Bone Miner Metab 6, 1–16 (1988). https://doi.org/10.1007/BF02375640

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375640

Keywords

Navigation