Skip to main content
Log in

Kinetic demixing and grain boundary conductivity of yttria-doped zirconia part I - experimental observations

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This work is directed towards a comprehensive study on the role of the microstructure and local chemistry of grain boundaries on the ionic conductivity of yttria (9 mol%)-stabilized zirconia and YSZ-alumina composites. It has been performed on samples prepared from two batches of YSZ powders containing ≈1.0 or 1.6 wt% SiO2. Electrical conductivity measurements show that the grain boundary conductivity (σgb) increases with the sintering temperature and the cooling rate at the end of sintering or when the amount of Si in the ceramic decreases. Alumina additions lead to a decrease in σgb of the samples containing 1.0 wt% SiO2, while σgb passes through a maximum in the highly silicon contaminated materials. These results coupled with TEM X-ray microanalysis, which have shown important gradients of the concentration ratio Al/Si in the grains, near the second phase, and in the glassy precipitates, suggest a competitive effect between the insulating alumina particles and the strong interaction of Al2O3 for SiO2, removing it from grain boundary localities. On the other hand, XPS analyses show that Si and Y segregate near the interfaces. Analysis of these results suggests a kinetic demixing process and allow us to explain the beneficial effect of a faster cooling rate at the end of sintering by the lower amount of Si rejected in grain-boundary localities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.Q. Minh, Ceramic fuel cells, J. Am. Cer. Soc.76, 563 (1993).

    CAS  Google Scholar 

  2. Bosch, Electricité et électronique pour l‘automobile à moteur à essence (1990).

  3. J.R. Macdonald, Impedance Spectroscopy, John Willey, New York (1987).

    Google Scholar 

  4. M. Filal, C. Petot, M. Mokchah, C. Chateau, J.L. Charpentier, Solid State Ionics80, 27 (1995).

    Article  CAS  Google Scholar 

  5. M. Filal, Thesis, Université Amiens (1994).

  6. G. Petot-Ervas, A. Rizea, C. Petot, Ionics6, 279 (2000).

    Google Scholar 

  7. S.P.S. Badwal, A.E. Hughes, Proceedings of the Second International Symposium on Solid Oxide Fuel Cells, (F. Gross, P. Zegers, S.C. Singhal and O. Yamamoto, Eds.) Office for Official Publications of the European Communities, Luxembourg, 445–454 (1991).

    Google Scholar 

  8. M.J. Verkerk, B.J. Middelhuis and A.J. Burggraaf, Solid State Ionics6, 159 (1982).

    Article  CAS  Google Scholar 

  9. S.P.S. Badwall and S. Rajendran, Solid State Ionics70/71, 83 (1994).

    Google Scholar 

  10. M.V. Inozemtsev, M.V. Perfil′ev, Elektrokhimiya11, 1031 (1975).

    CAS  Google Scholar 

  11. R.C. Buchanan and D.M. Wilson, Adv. Ceram.10, 526 (1984).

    CAS  Google Scholar 

  12. M.J. Verkerk, A.J.A. Winnubst and A.J. Burggraaf, J. Mat. Sci.17, 3113 (1982).

    Article  CAS  Google Scholar 

  13. M. Gödickemeier. B. Michel; A. Orliukas, P. Bohac, K. Sasaki; L. Gauckler; H. Heinrichg, P. Schwander, G. Kostorz; H. Hotmann, O. Frei, J. Mat. Res.9, 1228 (1994).

    Google Scholar 

  14. C. Petot, M. Filal, A. Rizea, K.H. Westmacott, J.Y. Laval, C. Lacour, J. Eur. Cer. Soc.18, 1419 (1998).

    CAS  Google Scholar 

  15. E.P. Butler, J. Drennan, J. Am. Cer. Soc.65, 474 (1982).

    CAS  Google Scholar 

  16. S.P.S. Badwal, Solid State Ionics76, 67 (1995).

    Article  CAS  Google Scholar 

  17. M. Aoki, Y.M. Chiang, I. Kosaki, L.J. Lee, H. Tuller, Y. Liu, J. Am. Cer. Soc.79, 1169 (1996).

    CAS  Google Scholar 

  18. J. Gong, Y. Li, Z. Zhang, Z. Tang, J. Am. Cer. Soc.83, 648 (2000).

    CAS  Google Scholar 

  19. J.F. Shackelford, P.S. Nicholson, W.W. Smeltzer, Am. Ceram. Soc. Bull.53, 865 (1974).

    CAS  Google Scholar 

  20. M. Rühle, N. Clausen, A.H. Heuer, Sci. Technol. Zirconia, Adv. Ceram.12, 352 (1984).

    Google Scholar 

  21. S.A. Theunissen, A.J. Winnubst, A.J. Burggraaf, J. Mater. Sci.27, 5057 (1992).

    CAS  Google Scholar 

  22. A.E. Hugues and B.A. Sexton, J. Mat. Sci.24, 1057 (1989).

    Google Scholar 

  23. A. Ioffe, M.V. Inozemtsev, A.S. Lipilin, M.V. Perfilev, S.V. Karpachov, Phys. Status Solidi A30, 2657 (1975).

    Google Scholar 

  24. S.P.S. Badwal, J. Drenann, J. Mat. Sci.22, 3231 (1987).

    CAS  Google Scholar 

  25. Xin Guo, Solid State Ionics81, 235 (1995).

    Article  CAS  Google Scholar 

  26. S.L. Hwang, J.W. Chen, J. Am. Cer. Soc.73, 3269 (1990).

    CAS  Google Scholar 

  27. P. Ruello, A. Rizea, C. Petot, G. Petot-Ervas, M.J. Graham, G.I. Sproule, Ionics7, 81 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizea, A., Petot, C., Petot-Ervas, G. et al. Kinetic demixing and grain boundary conductivity of yttria-doped zirconia part I - experimental observations. Ionics 7, 72–80 (2001). https://doi.org/10.1007/BF02375469

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375469

Keywords

Navigation