Skip to main content
Log in

Optimization of divalent magnesium ion conduction in phosphate based polycrystalline solid electrolytes

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A highest Mg2+ ion conducting polycrystalline solid electrolyte was successfully realized by improving the characteristics of both grain bulks and grain boundaries simultaneously. The former improvement was achieved by making a solid solution to substitute cation site for higher valent one to create Mg2+ ion vacancies in grain bulks. The latter was realized by obtaining a composite in such a manner to microscopically deposit the insulating secondary phase in grain boundaries. By combining above mentioned two effects, the optimization of Mg2+ ion conductivity at around 800 °C was effectively achieved to reach the total Mg2+ ion conductivity of approximately 10−2 S·cm−1 which is applicable in a practical range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.R. West, in: Solid State Chemistry and its Applications, John Wiley & Sons, Chichester, 1984, Chap. 13, p. 452.

    Google Scholar 

  2. T. Kudo and K. Fueki, in: Solid State Ionics, Kodansha, Tokyo, 1990, Chap. 9 and 10, p. 171.

  3. S. Ikeda, M. Takahashi, J. Ishikawa and K. Ito, Solid State Ionics23, 125 (1987).

    Article  CAS  Google Scholar 

  4. K. Nomura, S. Ikeda, K. Ito and H. Einaga, Bull. Chem. Soc. Jpn.65, 3221 (1992).

    CAS  Google Scholar 

  5. K. Nomura, S. Ikeda, K. Ito and H. Einaga, Solid State Ionics61, 293 (1993).

    Article  CAS  Google Scholar 

  6. G. Dorner, H. Durakpasa, G. Fafilek and M.W. Breiter, Solid State Ionics53–56, 553 (1992).

    Google Scholar 

  7. K.W. Semkow and A.F. Sammells, J. Electrochem. Soc.135, 244 (1988).

    CAS  Google Scholar 

  8. G.C. Farrington and B. Dunn, Solid State Ionics7, 267 (1982).

    Article  CAS  Google Scholar 

  9. R. Seevers, J. DeNuzzio, G.C. Farrington and B. Dunn, J. Solid State Chem.50, 146 (1983).

    Article  CAS  Google Scholar 

  10. B. Dunn and G.C. Farrington, Mater. Res. Bull.15, 1773 (1980).

    Article  CAS  Google Scholar 

  11. N. Imanaka, Y. Okazaki and G. Adachi, Chem. Lett. 1999, 939.

  12. N. Imanaka, Y. Okazaki and G. Adachi, J. Mater. Chem.10, 1431 (2000).

    Article  CAS  Google Scholar 

  13. N. Imanaka Y. Okazaki and G. Adachi, Electrochem. and Solid-State Letters3, 327 (2000).

    CAS  Google Scholar 

  14. R.D. Shannon, Acta Cryst.A32, 751 (1976).

    CAS  Google Scholar 

  15. Y. Kobayashi, T. Egawa, S. Tamura, N. Imanaka and G. Adachi, Chem. Mater.9, 1649 (1997).

    CAS  Google Scholar 

  16. C. Tubandt, Handb. exp. Physik7, 1 (1932).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Imanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imanaka, N., Okazaki, Y. & Adachi, G. Optimization of divalent magnesium ion conduction in phosphate based polycrystalline solid electrolytes. Ionics 7, 440–446 (2001). https://doi.org/10.1007/BF02373581

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02373581

Keywords

Navigation