Skip to main content
Log in

Reduced fatigue in electrically stimulated muscle using dual channel intrafascicular electrodes with interleaved stimulation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Pairs of intrafascicular electrodes were implanted within single fascicles of the nerve innervating the gastrocnemius muscle in cats. Measurements were made of fatigue induced in the muscle by single and dual channel tetanic stimulation. The level and rate of fatigue induced by concurrent dual channel stimulation (pulses presented simultaneously to the two electrodes) did not differ significantly from that induced by single channel stimulation. However, a significant reduction in the level and rate of muscle fatigue was found with interleaved dual channel stimulation. The extent of reduction in fatigue was found to be inversely related to the amount of overlap in the axonal populations activated by each of the two electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baratta, R.; Ichie, M.; Hwang, S.K.; Solomonow, M. Orderly stimulation of skeletal muscle motor units with tripolar nerve cuff electrode. IEEE Trans. Biomed. Eng. 36:836–843; 1989.

    Article  CAS  PubMed  Google Scholar 

  2. Burke, R.E.; Levine, D.N.; Salcman, M.; Tsairis, P., Motor units in cat soleus muscle: Physiological, histochemical and morphological characteristics. J. Physiol. 238:503–514; 1974.

    CAS  PubMed  Google Scholar 

  3. Burke, R.E.; Levine, D.N.; Tsairis, P.; Zajac, F.E. Physiological types and histochemical profiles in motor units of the cat gastronemius. J. Physiol. 234:723–748; 1973.

    CAS  PubMed  Google Scholar 

  4. Fang, Z.-P.; Mortimer, J.T. A method to effect physiological recruitment order in electrically activated muscle. IEEE Trans. Biomed. Eng. 38:175–179; 1991.

    CAS  PubMed  Google Scholar 

  5. Goodall, E.V.; Lefurge, T.M.; Horch, K.W. Information contained in sensory nerve recordings made with intrafascicular electrodes. IEEE Trans. Biomed. Eng. 38:846–850; 1991.

    Article  CAS  PubMed  Google Scholar 

  6. Halbertsma, J.M. The stride cycle of the cat: The modelling of locomotion by computerized analysis of automatic recordings. Acta Physiol. Scand. Suppl. 521:1–75; 1983.

    CAS  PubMed  Google Scholar 

  7. Happak, W.; Gruber, H.; Holle, J.; Mayr, W.; Schmutterer, C.; Windberger, U.; Losert, U.; Thoma, H. Multi-channel indirect stimulation reduces muscle fatigue. Proc. Ann. Intl. Cont. IEEE Eng. Med. Biol. Soc. 11:240–241; 1989.

    Google Scholar 

  8. Kraij, A.; Bajd, T.; Turk, R.; Benko, H. Posture switching for prolonging functional electrical stimulation standing in paraplegic patients. Paraplegia 24:221–230; 1986.

    Google Scholar 

  9. Kralj, A.; Bajd, T.; Turk, R.; Krajnik, J.; Benko, H. Gait restoration in paraplegic patients: a feasibility demonstration using multichannel surface electrode FES. J. Rehabil. R&D 20:3–20; 1983.

    CAS  Google Scholar 

  10. Kralj, A.R.; Bajd, T. Functional electrical stimulation: Standing and walking after spinal cord injury. Boca Raton, FL: CRC Press; 1989.

    Google Scholar 

  11. Lefurge, T.; Goodall, E.; Horch, K.; Stensaas, L.; Schoenberg, A. Chronically implanted intrafascicular recording electrodes. Ann. Biomed. Eng. 19:197–207; 1991.

    Article  CAS  PubMed  Google Scholar 

  12. McNeal, D.R.; Nakai, R.J.; Meadows, P.; Tu, W. Control of the freely-swinging paralyzed leg before and after exercise. IX International Symposium on External Control of Human Extremities. Belgrad, Yugoslavia: 1987:pp. 261–273.

  13. McPhedran, A.M.; Wuerker, R.B.; Henneman, E. Properties of motor units in a homogeneous red muscle (soleus) of the cat. J. Neurophysiol. 28:71–84; 1965.

    CAS  PubMed  Google Scholar 

  14. Meier, J.H.; Rutten, W.L.C.; Zoutman, A.E.; Boom, H.B.K.; Bergveld, P. Simulation of multipolar fiber selective neural stimulation using intrafascicular electrodes. IEEE Trans. Biomed. Eng. 39:122–134; 1992.

    Article  CAS  PubMed  Google Scholar 

  15. Mortimer, J.T. Motor prostheses. In: Brooks, V.B., ed. Handbook of physiology. Section 1: The nervous system. Bethesda, MD: American Physiological Society; 1981: pp. 155–187.

    Google Scholar 

  16. Nannini, N. Optimal stimulus parameters for muscle recruitment with intrafascicular electrodes. Salt Lake City, UT: Univ. Utah; 1989. M.S. Thesis.

    Google Scholar 

  17. Nannini, N.; Horch, K. Muscle recruitment with intrafascicular electrodes. IEEE Trans. Biomed. Eng. 38:769–776; 1991.

    Article  CAS  PubMed  Google Scholar 

  18. Peckham, P.H.; Van Der Meulen, J.P.; Reswick, J.B. Electrical activation of skeletal muscle by sequential stimulation. In: Wulfson, N.; Sances, A. Jr., eds. The nervous system and electrical currents. New York: Plenum; 1970: pp. 45–49.

    Google Scholar 

  19. Petrofsky, J.S. Sequential motor unit stimulation through peripheral motor nerves in the cat. Med. Biol. Eng. Comput. 17:87–93; 1979.

    CAS  PubMed  Google Scholar 

  20. Powers, R.K.; Binder, M.D. Effects of low-frequency stimulation on the tension-frequency relations of fast-twitch motor units in the cat. J. Neurophysiol. 66:905–918; 1991.

    CAS  PubMed  Google Scholar 

  21. Proske, U.; Waite, P.M.E. Properties of types of motor units in the medial gastrocnemius muscle of the cat. Brain Res. 67:89–101; 1974.

    Article  CAS  PubMed  Google Scholar 

  22. Rutten, W.L.C.; van Wier, H.J.; Put, J.H.M. Sensitivity and selectivity of intraneural stimulation using a silicon electrode array. IEEE Trans. Biomed. Eng. 38:192–198; 1991.

    Article  CAS  PubMed  Google Scholar 

  23. Sweeney, J.D., Ksienski, D.A.; Mortimer, J.T. A nerve cuff technique for selective excitation of peripheral nerve trunk regions. IEEE Trans. Biomed. Eng. 37:706–715; 1990.

    Article  CAS  PubMed  Google Scholar 

  24. Thoma, H.; Girsch, W., Holle, J.; Mayr, W. Technology and long-term application of an epineural electrode. Trans. Am. Soc. Artif. Intern. Organs 35:490–494; 1989.

    CAS  Google Scholar 

  25. Veltink, P.H.; van Alsté, J.A.; Boom, H.B.K. Simulation of intrafascicular and extraneural nerve stimulation. IEEE Trans. Biomed. Eng. 35:69–75; 1988.

    CAS  PubMed  Google Scholar 

  26. Veltink, P.H.; van Alsté, J.A.; Boom, H.B.K. Influences of stimulation conditions on recruitment of myelinated nerve fibers: A model study. IEEE Trans. Biomed. Eng. 35:917–924; 1988.

    CAS  PubMed  Google Scholar 

  27. Veltink, P.H.; van Alsté, J.A.; Boom, H.B.K. Multielectrode intrafascicular and extraneural stimulation. Med. Biol. Eng. Comput. 27:19–24; 1989.

    CAS  PubMed  Google Scholar 

  28. Wuerker, R.B.; McPhedran, A.M.; Henneman, E. Properties of motor units in a heterogeneous pale muscle (M. gastrocnemius) of the cat. J. Neurophysiol. 28:85–99; 1965.

    PubMed  Google Scholar 

  29. Yoshida, K.; Horch, K. Selective stimulation of peripheral nerve fibers using dual intrafascicular electrodes. IEEE Trans. Biomed. Eng. 40:492–494; 1993.

    Article  CAS  PubMed  Google Scholar 

  30. Zajac, F.E.; Faden, J.S. Relationship among recruitment order, axonal conduction velocity, and muscle-unit properties of type-identified motor units in cat plantaris muscle. J. Neurophysiol. 53:1303–1322; 1985.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, K., Horch, K. Reduced fatigue in electrically stimulated muscle using dual channel intrafascicular electrodes with interleaved stimulation. Ann Biomed Eng 21, 709–714 (1993). https://doi.org/10.1007/BF02368649

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368649

Keywords

Navigation