Skip to main content
Log in

Identification of the three-element windkessel model incorporating a pressure-dependent compliance

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A new one-step computational procedure is presented for estimating the parameters of the nonlinear three-element windkessel model of the arterial system incorporating a pressure-dependent compliance. The data required are pulsatile aortic pressure and flow. The basic assumptions are a steadystate periodic regime and a purely elastic compliant element. By stating two conditions, zero mean flow and zero mean power in the compliant element, peripheral and characteristic resistances are determined through simple closed form formulas as functions of mean values of the square of aortic pressure, the square of aortic flow, and the product of aortic pressure with aortic flow. The pressure across as well as the flow through the compliant element can be then obtained so allowing the calculation of volume variation and compliance as functions of pressure. The feasibility of this method is studied by applying it to both simulated and experimental data relative to different circulatory conditions and comparing the results with those obtained by an iterative parameter optimization algorithm and with the actual values when available. The conclusion is that the proposed method appears to be effective in identifying the three-element windkessel even in the case of nonlinear compliance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avanzolini, G., A. Cappello, and G. Gnudi. An efficient algorithm for estimating circulatory mechanical parameters by microcomputers. In: Proc. IEEE-EMBS 11th Int. Conf. New York: IEEE, 1989, pp. 1979–1981.

    Google Scholar 

  2. Avanzolini, G., A. Cappello, and G. Gnudi. Model selection and parameter estimation for aortic input impedance.Automedica 5:37–53, 1984.

    Google Scholar 

  3. Avanzolini, G., A. Cappello, and G. Gnudi. A comparative evaluation of models for the aortic input impedance. In: Proc. VI Medit. Conf. Med. Biol. Eng., July 1992, edited by M. Bracale and F. Denoth Capri, Italy: Area di Ricerca-CNR-Pisa, 1992, pp. 227–230.

    Google Scholar 

  4. Bergel, D. H. Static elastic properties of the arterial wall.J. Physiol. 156:445–457, 1961.

    Google Scholar 

  5. Burattini, R., and K. B. Campbell. Modified asymmetric T-tube model to infer arterial wave reflection at the aortic root.IEEE Trans. Biomed. Eng. 36:805–814, 1989.

    Article  CAS  PubMed  Google Scholar 

  6. Burattini, R., and G. Gnudi. Computer identification of models for the arterial tree input impedance.Med. Biol. Eng. Comput. 20:134–144, 1982.

    CAS  PubMed  Google Scholar 

  7. Burattini, R., G. Gnudi, N. Westerhof, and S. Fioretti. Total systemic arterial compliance and aortic characteristic impedance in the dog as a function of pressure: A model based study.Comput. Biomed. Res. 20:154–165, 1987.

    Article  CAS  PubMed  Google Scholar 

  8. Cappello, A., and G. Gnudi. Analysis of the arterial pressure-volume curve in the three-element windkessel model. In: Proc. Int. Conf. Computers in Cardiology—London, Sept. 5–8, 1993. Los Alamitos, CA: IEEE Computer Society Press, 1993, pp. 385–388.

    Google Scholar 

  9. Deswysen, B., A. A. Charlier, and M. Gevers. Quantitative evaluation of the systemic arterial bed by parameter estimation of a simple model.Med. Biol. Eng. Comput. 18:153–166, 1980.

    CAS  PubMed  Google Scholar 

  10. Dujardin, J. P. L., and D. N. Stone. Characteristic impedance of the proximal aorta determined in the time and frequency domain: A comparison.Med. Biol. Eng. Comput. 19:565–568, 1981.

    CAS  PubMed  Google Scholar 

  11. Laxminarayan, S., P. Sipkema, and N. Westerhof. Characterization of the arterial system in the time domain.IEEE Trans. Biomed. Eng. 25:177–184, 1978.

    CAS  PubMed  Google Scholar 

  12. Li, J. K. J., T. Cui, and G. M. Drzewiecki. A nonlinear model of the arterial system incorporating a pressure-dependent compliance.IEEE Trans. Biomed. Eng. 37:673–678, 1990.

    Article  CAS  PubMed  Google Scholar 

  13. Ling, S. C., and H. B. Atabek. A nonlinear analysis of pulsatile flow in arteries.J. Fluid Mech. 55:493–511, 1972.

    Google Scholar 

  14. Liu, Z., K. P. Brin, and F. C. P. Yin. Estimation of total arterial compliance: An improved method and evaluation of current methods.Am. J. Physiol. 251 (Heart Circ. Physiol. 20):H588-H600, 1986.

    CAS  PubMed  Google Scholar 

  15. Lucas, C. L., B. R. Wilcox, and B. Ha. Comparison of time domain algorithms for estimating aortic characteristic impedance in humans.IEEE Trans. Biomed. Eng. 35:62–68, 1988.

    Article  CAS  PubMed  Google Scholar 

  16. Milnor, R. W. Hemodynamics, 2nd edition. Baltimore, MD: Williams & Wilkins, 1989, pp. 6–200.

    Google Scholar 

  17. Schoukens, J., and R. Pintelon. Identification of Linear Systems, a Practical Guideline to Accurate Modeling, Oxford: Pergamon Press, 1991, pp. 20–80.

    Google Scholar 

  18. Toy, S. M., J. Melbin, and A. Noordergraaf. Reduced models of arterial systems.IEEE Trans. Biomed. Eng. 32: 174–176, 1985.

    CAS  PubMed  Google Scholar 

  19. Westerhof, N., G. Elzinga, and G. C. Van den Bos. Influence of central and peripheral changes on the hydraulic input impedance of the systemic arterial tree.Med. Biol. Eng. 710–723, 1973.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cappello, A., Gnudi, G. & Lamberti, C. Identification of the three-element windkessel model incorporating a pressure-dependent compliance. Ann Biomed Eng 23, 164–177 (1995). https://doi.org/10.1007/BF02368323

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368323

Keywords

Navigation