Skip to main content
Log in

Diastolic mechanics and the origin of the third heart sound

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The third heart sound (S3) is observed for various hemodynamic conditions in both the normal and diseased heart. A theory is proposed in which myocardial viscoelasticity is primarily responsible for S3. A mathematical model is developed based on the mechanical aspects of diastolic function: nonlinear elasticity, viscoelasticity, and pressure generation. The model is provided as an electrical analogy of the left ventricle and circulatory system. S3 is predicted for the normal heart and the heart with dilated cardiomyopathy. An elevation of S3 intensity is indicated for cardiomyopathy, as is often observed in the clinic. S3 is produced experimentally by volume loading of the open-chest canine preparation and mathematically by imposing the conditions of volume loading on the model. Consistency of theory and experiment imply that it is valid to attribute S3 to myocardial viscoelasticity. The animal whose heart possessed the largest constant of viscoelasticity produced the greatest level of S3, in both cases. Nonlinear ventricular compliance is not found to be an essential requirement for sound generation, although increased compliance led to an increase in sound. S3 is predicted to change in response to venous return, ventricular stiffness, contractility, heart rate, and duration of contraction, as observed by others. In general, the coupling of these quantities to S3 is explained in terms of an excitation of viscous properties of the ventricle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dock, W.; Grandell, F.; Taubman, F. The physiologic third heart sound: Its mechanism and relation to protodiastolic gallop. Amer. Heart J. 50:449–464; 1955.

    Article  CAS  PubMed  Google Scholar 

  2. Drzewiecki, G.; Krawciw, N. An electronic implementation of left heart pumping. Med. Electronics. 19:118–122; 1988.

    Google Scholar 

  3. Drzewiecki, G.M.; Wasicko, M.; Li, J.K-J. Diastolic cardiac properties and the origin of the third heart sound. Proc. 7th Int. Conf. Cardiovascular System Dynamics Society, Session 3, Zuoz, Switzerland. 1986: p. 4.

  4. Drzewiecki, G.M.; Karam, E.; Welkowitz, W. Mechanisms leading to the development of isovolumic pressure during ventricular relaxation. Proc. 8th Ann. Conf. IEEE/EMBS, Boston, MA. 1987: pp. 525–526.

  5. Drzewiecki, G.M.; Karam, E.; Wagner, T. Examination of the time-varying elastance model during ventricular relaxation. Proc. 8th Int. Conf. Cardiovasc. System Dynamics Society, Osaka, Japan. 1987: p. 181.

  6. Drzewiecki, G.M.; Karam, E.; Welkowitz, W. Physiological basis for mechanical time variance in the heart: Special consideration of non-linear function. J. Theoretical Biology. 139:465–486; 1989.

    CAS  Google Scholar 

  7. Drzewiecki, G.M.; Melbin, J.; Noordergraaf, A. The Korotkoff sound. Ann. Biomedical Eng. 17: 325–359; 1989.

    CAS  Google Scholar 

  8. El Gamal, M.; Smith, D. Occurrence of a left ventricular third heart sound in incompetent mitral heterografts. British Heart J. 32:496–500; 1970.

    Google Scholar 

  9. Fleming, J. Evidence for a mitral valve origin of the left ventricular third heart sound. British Heart J. 31:192–199; 1969.

    CAS  Google Scholar 

  10. Gaasch, W.; Battle, W.; Obuler, J.; Levine, H. Left ventricular stress and compliance in man with special reference to normalized ventricular function curves. Circulation 45:746–768; 1972.

    CAS  PubMed  Google Scholar 

  11. Grossman, S.; McLaurin, L.; Rolett, E. Alterations in left ventricular relaxation and diastolic compliance in congestive cardiomyopathy. Cardiovascular Research 13:514–522; 1979.

    CAS  PubMed  Google Scholar 

  12. Laskey, W.; Shroff, S.; Kussmail, W.; Martin, J.; Kleaveland, P.; Hirshfield, J. Arterial pressure/flow relationships in heart failure due to congestive cardiomyopathy. Proc. Cardiovascular System Dynamics Society, Philadelphia, PA. 1984: pp. 324–327.

  13. Meisner, J.S.; Yellin, E.L. Model of LV filling dynamics and diastolic function. Proc. 38th Ann. Conf. Eng. Med. Biol., Chicago, IL. 1985: p. 201.

  14. Melbin, J.; Summerfield, S.; Noordergraaf, A. Nonlinear structural and material properties and models: The pulmonary trunk. Ann. Biomedical Eng. 16:175–200; 1988.

    CAS  Google Scholar 

  15. Mirsky, I.; Parmley, W.W. Assessment of passive elastic stiffness for isolated heart muscle and intact heart. Circ. Res. 33:233–243; 1973.

    CAS  PubMed  Google Scholar 

  16. Nikolic, S.D.; Tamura, K.; Tamura, T.; Dahm, M.; Frater, R.W.M.; Yellin, E.L. Diastolic viscous properties of the intact canine left ventricle. Circulation Research. 67:352–359; 1990.

    CAS  PubMed  Google Scholar 

  17. Noble, M.; Milne, E.; Goerke, R.; Carlsson, E.; Domenech, R.; Saunders, K.; Hoffman, J. Left ventricular filling and diastolic pressure-volume relations in the conscious dog. Circ. Res. 29:269–283; 1969.

    Google Scholar 

  18. Noordergraaf, A. Circulatory system dynamics. New York: Academic Press; 1978.

    Google Scholar 

  19. Ozawa, Y.; Smith, D.; Craige, E. Origin of the third heart sound: I. Studies in dogs. Circulation 67:393–398; 1983.

    CAS  PubMed  Google Scholar 

  20. Rankin, J.; Arentzen, C.; McHale, P.; Ling, D.; Anderson, R. Viscoelastic preperties of the diastolic left ventricle in the conscious dog. Circ. Res. 41:37–45; 1977.

    CAS  PubMed  Google Scholar 

  21. Rushmer, R. Cardiovascular dynamics. 4th ed. Philadelphia: W.B. Saunders; 1976.

    Google Scholar 

  22. Sakamoto, T.; Ischiyasu, H.; Hayashi, T.; Kawarantani, H.; Amano, K.; Yoshiyuki, H. Genesis of third heart sounds: Phonoechocardiographic studies. Japanese Heart J. 17:150–162; 1976.

    CAS  Google Scholar 

  23. Smith, J. Observations on the mechanism of the physiologic third heart sound. Amer. Heart J. 28:661–668; 1944.

    Article  Google Scholar 

  24. Stefadouros, M.; Little, R. The cause and clinical significance of diastolic heart sounds. Arch. Internal Med. 140:537–541; 1980.

    CAS  Google Scholar 

  25. Stein, P.D. A physical and physiological basis for the interpretation of cardiac ausculation. New York: Futura; 1981.

    Google Scholar 

  26. Suga, H.; Sagawa, K. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ. Res. 35:117–126; 1974.

    CAS  PubMed  Google Scholar 

  27. Sunagawa, K.; Yamada, A.; Senda, Y.; Kikuchi, Y.; Nakamura, M.; Shibahara, T.; Nose, Y. Estimation of the hydromotive source pressure from ejecting beats of the left ventricle. IEEE Trans. Biomed. Eng. 27:299–305; 1980.

    CAS  PubMed  Google Scholar 

  28. Takagi, T.; Koiwa, Y.; Ohyama, T.; Kikuchi, J-I.; Honda, H.; Hoshi, N.; Takishima, T.; Tezuka, F. Sensitivity of the transfer function for intracellular edema during hypothermic open chest surgery. Proc. Circulatory System Dynamics Soc., Halifax. 1988; pp. 335–338.

  29. Van de Werf, F.; Geboers, J.; Kesteloot, H.; Degeest, H.; Barrios, L.; The mechanism of disappearance of the physiological third heart sound with age. Circulation 73:877–884; 1986.

    PubMed  Google Scholar 

  30. Van de Werf, F.; Boel, A.; Geboers, J.; Minten, J.; Willems, J.; Degeest, H.; Kesteloot, H. Diastolic properties of the left ventricle in normal adults and in patients with third heart sounds. Circulation 69:1070–1078; 1984.

    PubMed  Google Scholar 

  31. Van de Werf, F.; Minten, J.; Carmeliet, P.; Degeest, H.; Kesteloot, H. The genesis of the third and fourth heart sounds; a pressure-flow study in dogs. J. Clinical Invest. 73:1400–1407; 1984.

    Google Scholar 

  32. Wasicko, M.; Drzewiecki, G.M.; Li, J.K-J.; Merrill, G. Analysis of the third heart sound origin. Proc. 39th Ann. Conf. Eng. Med. Biol., Baltimore, MD. 1986: p. 189.

  33. Wasicko, M.; Drzewiecki, G.M.; Li, J.K-J.; Experimental evaluation of a model for the origin of the third heart sound. Proc. Northeast Bioengineering Conf., Philadelphia, PA. 1987: pp. 333–335.

  34. Westerhof, N.; Noordergraaf, A. Arterial viscoelasticity. A generalized model. Effect on input impedance and wave travel in the systemic tree. J. Biomech. 3:357–379; 1970.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drzewiecki, G.M., Wasicko, M.J. & Li, J.K.J. Diastolic mechanics and the origin of the third heart sound. Ann Biomed Eng 19, 651–667 (1991). https://doi.org/10.1007/BF02368074

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368074

Keywords

Navigation