Skip to main content
Log in

Electrical stimulation of the motor cortex: Theoretical considerations

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The aim of this paper is to present the results of a theoretical analysis of the intracranial fields produced by electrical stimulation of the unexposed motor cortex with surface electrodes in humans. Simulations of a first approximation model of the head indicate that the intensity and the spatial configuration of the intracranial fields can be controlled, to a great extent, by proper choice of the location and of the number of the stimulating electrodes. Fields are shown to be reasonably insensitive to changes of some crucial parameters, like the number of the stimulating electrodes and the ratio between the conductivity of the skull and that of the other tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, K.; Aimone-Marsan, C. Patterns of cortical discharges and their relation to routine scalp electroencephalography. Electroencephalogr. Clin. Neurophysiol. 10:447–461; 1958.

    CAS  Google Scholar 

  2. Albers, B.A., Rutten, W.L.C.; Wallinga-de Jonge, W.; Boom, H.B.K. A model study on the influence of structure and membrane capacitance on volume conduction in skeletal muscle tissue. IEEE Trans. Biomed. Eng. 33:681–689; 1986.

    CAS  PubMed  Google Scholar 

  3. Ary, J.P., Klein, S.A.; Fender, D.H. Location of source of evoked scalp potentials: corrections for skull and scalp thickness. IEEE Trans. Biomed. Eng. 28:447–452; 1981.

    CAS  PubMed  Google Scholar 

  4. Barker, A.T.; Freeston, I.L.; Jalinous, R.; Jarratt, J.A. Motor responses to non-invasive brain stimulation in clinical practice. Electroencephalogr.. Clin. Neurophysiol. 61:S70; 1985.

    Google Scholar 

  5. Boyd, S.G.; Rothwell, J.C.; Cowan, J.M.A.; Webb, P.J.; Morley, T.; Asselman, P.; Marsden, C.D. A method of monitoring function in corticospinal pathways during scoliosis surgery with a note on motor conduction velocities. J. Neurol. Neurosurg. Psychiat. 49:251–257; 1986.

    CAS  PubMed  Google Scholar 

  6. Brazier, M.A.B. A study of the electrical fields at the surface of the head. Electroencephalogr. Clin. Neurophysiol. 2:38–52; 1949.

    Google Scholar 

  7. Cohen, D.; Cuffin, B.N. Demonstration of useful differences between magnetoencefalograms and elettroencefalogram. Electroencephalogr. Clin. Neurophysiol. 56:38–51; 1983.

    CAS  PubMed  Google Scholar 

  8. De Lucchi, M.R.; Garoutte B.; Aird, R.B. The scalp as an electroencephalographic averager. Electroencephalogr. Clin. Neurophysiol. 14:191–196; 1962.

    Google Scholar 

  9. Geisler, C.D. Average responses to clicks in man recorded by scalp electrodes. M.I.T. Technical Report, No. 380:1–158; 1960.

    Google Scholar 

  10. Geisler, C.D.; Gerstein, G.L. The surface EEG in relation to its sources. Electroencephalogr. Clin. Neurophysiol. 13:927–934; 1961.

    Google Scholar 

  11. Grandori, F. Potential fields evoked by the peripheral auditory pathway: inverse solutions. Int. J. Biomed. Comp. 13:517–528; 1982.

    CAS  Google Scholar 

  12. Grandori, F. Dipole localization methods (DLM) and auditory evoked brainstem potentials. Rev. Larying. Otol. Rhinol 105:171–178; 1984.

    CAS  Google Scholar 

  13. Grandori, F. Field analysis of auditory evoked brainstem potentials. Hearing Res. 21:51–58; 1986.

    Article  CAS  Google Scholar 

  14. Grandori, F. Intracranial electric fields during transcranial brain stimulation. Modelling and simulations. In: Rossini, P.M.; Marsden, C.D. eds. Non-Invasive Stimulation of Brain and Spinal Cord: Fundamentals and Clinical Applications. New York: A.R. Liss; (in press).

  15. Grandori, F. Modelling considerations for the stimulation of the motor cortex with transcranial electrodes. 7th Congr. of the Int Soc. of Electrophysiological Kinesiology, Enschede, June 20–23; 1988.

  16. Jalinous, R.; Barker, A.T.; Freeston, I.L. The design, construction and performance of a magnetic nerve stimulator. Proc. of the IEE Int. Conf. on Electrical and Magnetic Fields in Medicine and Biology, Conf. Publ. Vol. No 257:59–63, London, IEE; 1985.

  17. Kavanagh, R.N., Darcey, T.M.; Lehmann, D.; Fender, D.H. Evaluation of methods for three-dimensional localization of electrical sources in the human brain. IEEE Trans. Biomed. Eng. 25:421–429; 1978.

    CAS  PubMed  Google Scholar 

  18. He, B.; Musha, T.; Okamoto, Y.; Homma, S.; Nakajima, Y., Sato, T. Electric dipole tracing in the brain by means of the boundary element method and its accuracy. IEEE Trans. Biomed. Eng. 34:406–414; 1987.

    CAS  PubMed  Google Scholar 

  19. Henderson, C.J.; Butler, S.R.; Glass, A. The localization of equivalent dipoles of EEG sources by the application of electrical field theory. Electroencephalogr. Clin. Neurophysiol. 39:117–130; 1975.

    CAS  PubMed  Google Scholar 

  20. Heringa, A.; Stegeman, D.F.; Uijen, G.J.H.; de Weerd, J.P.C. Solution methods of electrical field problems in physiology IEEE Trans. Biomed. Eng. 29:34–42; 1982.

    CAS  PubMed  Google Scholar 

  21. Hosek, R.S.; Sances, A., Jr.; Jodat, R.W.; Larson, S.J. The contribution of intracerebral currents to the EEG and evoked potentials. IEEE Trans. Biomed. Eng. 25:405–413; 1978.

    CAS  PubMed  Google Scholar 

  22. Levy, W.J.; York, D.H.; McCaffrey, M.; Tanzer, F. Motor evoked potentials from transcranial stimulation of the motor cortex in humans. Neurosurgery 15:287–302; 1984.

    CAS  PubMed  Google Scholar 

  23. Mejis, J.W.H.; Peters, M. The EEG and MEG, using a model of eccentric spheres to describe the head. Electroencephalogr. Clin. Neurophysiol. 34:913–920; 1987.

    Google Scholar 

  24. Merton, P.A.; Morton, H.B. Stimulation of the cerebral cortex in the intact subject. Nature (Lond.) 285:227; 1980.

    Article  CAS  Google Scholar 

  25. Merton, P.A.; Morton, H.B.; Hill, D.K.; Marsden, C.D. Scope of a technique for electrical stimulation of human brain, spinal cord, and muscle. Lancet 11:597–600; 1982.

    Google Scholar 

  26. Mills, K.R.; Murray, N.M.F. Corticospinal tract conduction time in Multiple Sclerosis. Ann. Neurol. 18:601–605; 1985.

    Article  CAS  PubMed  Google Scholar 

  27. Nicholson, P.W. Specific impedance of cerebral white matter. Exptl. Neurol. 13:386–401; 1965.

    Article  CAS  Google Scholar 

  28. Pratt, H.; Har'El, Z.; Golos, E. Geometrical analysis of human three channel Lissajous' trajectory of auditory brainstem evoked potentials. Electroencephalogr. Clin. Neurophysiol. 58:83–88; 1984.

    CAS  PubMed  Google Scholar 

  29. Rossini, P.; Di Stefano, E.; Stanzione, P. Nerve impulse propagation along central and peripheral fast conducting motor and sensory pathways in man. Electroencephalogr. Clin. Neurophysiol. 60:320–334; 1985a.

    CAS  PubMed  Google Scholar 

  30. Rossini, P.M.; Marciani, M.G.; Caramia, M.; Zarola, F. Nervous propagation along central motor pathways in intact man: characteristics of motor responses to “bifocal” and “unifocal” spine and scalp non-invasive stimulation. Electroencephalogr. Clin. Neurophysiol. 61:272–284; 1985b.

    CAS  PubMed  Google Scholar 

  31. Rudy, Y.; Plonsey, R. The eccentric spheres model as the basis for a study on the role of geometry and inhomogeneities in the electrocardiography. IEEE Trans. Biomed. Eng. 26:392–399; 1979.

    CAS  PubMed  Google Scholar 

  32. Rush, S.; Driscoll, D.A. Current distribution in the brain from surface electrodes. Anesthesia and Analgesia 47:717–723; 1968.

    CAS  PubMed  Google Scholar 

  33. Rush, S.; Driscoll, D.A. EEG electrode sensitivity—An application of reciprocity. IEEE Trans. Biomed. Eng. 16:15–22; 1969.

    CAS  PubMed  Google Scholar 

  34. Scherg, M. Spatio-temporal modelling of early auditory evoked potentials. Rev. Laryng. Otol. Rhinol. 105:163–170; 1984.

    CAS  Google Scholar 

  35. Scherg, M.; von Cramon, D. A new interpretation of the generators of BAEP waves I–V: results of a spatio-temporal dipole model. Electroencephalogr. Clin. Neurophysiol. 62:290–299; 1985.

    CAS  PubMed  Google Scholar 

  36. Schneider, M.R. A multistage process for computing virtual dipolar sources of EEG discharges from surface information. IEEE Trans. Biomed. Eng. 19:1–12; 1972.

    CAS  PubMed  Google Scholar 

  37. Schneider, M. Effect of inhomogeneities on surface signals coming from a cerebral current-dipole source. IEEE Trans. Biomed. Eng. 21:52–54; 1974.

    CAS  PubMed  Google Scholar 

  38. Sok, C.J. The influence of model parameters on EEG/MEG single dipole source estimation. IEEE Trans. Biomed. Eng. 34:289–296; 1987.

    Google Scholar 

  39. Weinberg, H.; Brickett, P.; Coolsma, F.; Baff, M. Magnetic localisation of intracranial dipoles: simulation with a physical model. Electroencephalogr. Clin. Neurophysiol. 64:159–170; 1986.

    CAS  PubMed  Google Scholar 

  40. Witwer, J.G.; Trezek, G.J.; Jewett, D.L. The effect of media inhomogeneities upon intracranial electrical fields. IEEE Trans. Biomed. Eng. 19:352–362; 1972.

    CAS  PubMed  Google Scholar 

  41. Wood, C.C. Application of dipole localization methods to source identification of human evoked potentials, Ann. N.Y. Acad. Sci. vol. 388, pp. 139–155; 1982.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grandori, F., Rossini, P. Electrical stimulation of the motor cortex: Theoretical considerations. Ann Biomed Eng 16, 639–652 (1988). https://doi.org/10.1007/BF02368019

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368019

Keywords

Navigation