Skip to main content
Log in

Signal processing strategies for enhancement of signal-to-noise ratio of thermodilution measurements

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Thermodilution measurements of clinically important cardiac parameters, such as cardiac output and stroke volume, are subject to many sources of error. The temperature fluctuations (thermal noise) normally found in the pulmonary artery constitute one of these sources of errors. To improve the signal-to-noise ratio of thermodilution flow measurements rather than increase the signal level, we investigated four signal processing strategies designed to reduce the thermal noise power. We applied the noise reduction strategies to thermal noise data, containing simulated thermodilution curves, obtained in a mock circulatory loop. We compared the accuracy and reproducibility of the curve area estimates produced by the algorithms to the area estimates obtained by numerical integration of the thermal signal. Our results show that a bandpass (BP) integration technique combined with a noise canceler can improve thermodilution curve area estimate reproducibility and accuracy. The BP integration technique improved the reproducibility of cardiac output measurements by roughly 16 dB and is directly applicable to most thermodilution hardware currently in use. The more accurate noise cancelers, combined with the BP integration technique, provided correspondingly improved signal-to-noise ratios, with the improvement ranging up to 50 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afonso, S.; Herrick, J.F.; Rowe, G.G.; Crumpton, C.W. Temperature variations in the venous system of dogs. Am. J. Physiol. 203:278–282; 1962.

    CAS  PubMed  Google Scholar 

  2. Antman S., Foundations of indicator dilution theory. In: Bloomfield, D.A. ed. Dye Curves: The Theory and Practice of Indicator Dilution, Baltimore: University Park Press; 1974: pp. 24–29.

    Google Scholar 

  3. Barankay, T.; Jancsó, T.; Nagy, S.; Petri, G.. Cardiac output estimation by a thermodilution method involving intravascular heating and thermistor recording. Acta Physiol. Acad. Sci. Hung. 38(2–3):167–173; 1970.

    CAS  PubMed  Google Scholar 

  4. Bassingthwaighte, J.B.; Ackerman, F.H.; Wood, E.H. Applications of the lagged normal density curve as a model for arterial dilution curves. Circ. Res. 18:398–415; 1966.

    CAS  PubMed  Google Scholar 

  5. Elkayam, U.; Berkley, R.; Azen, S.; Weber, L.; Geva, B.; Henry, W.L. Cardiac output by thermodilution technique: Effect of injectate volume and temperature on the accuracy and reproducibility in the critically ill patient. Chest 84:418–422; 1983.

    CAS  PubMed  Google Scholar 

  6. Ganz, W.; Swan, H.J.C. Measurement of blood flow by thermodilution. Am. J. Cardiol. 29:241–246; 1972.

    CAS  PubMed  Google Scholar 

  7. Johnson, R.W.; Normann, R.A. Mathematical and mechanical modeling of heat transport through the heart. Ann. Biomed. Eng. 15:603–617; 1987.

    Article  CAS  PubMed  Google Scholar 

  8. Khalil, H.H.; Richardson, T.Q.; Guyton, A.C. Measurement of cardiac output by thermal-dilution and direct Fick methods in dogs. J. Appl. Physiol. 21:1131–1135; 1966.

    CAS  PubMed  Google Scholar 

  9. Maron, M.J. Numerical analysis: A practical approach, 2nd ed., New York: Macmillan; 1987; p. 420.

    Google Scholar 

  10. Philip, J.H.; Long, M.C.; Quinn, M.D.; Newbower, R.S. Continuous thermal measurement of cardiac output. IEEE Trans. Biomed. Eng. 31:393–399; 1984.

    CAS  PubMed  Google Scholar 

  11. Riedinger, M.S.; Shellock, F.G. Technical aspects of the thermodilution method for measuring cardiac output. Heart Lung 13:215–221; 1984.

    CAS  PubMed  Google Scholar 

  12. Stawicki, J.J.; Holfold, F.D.; Michelson, E.L.; Josephson, M.E. Multiple cardiac output measurements in man. Chest 76:193–197; 1979.

    CAS  PubMed  Google Scholar 

  13. Wessel, H.U.; Paul, M.H.; James, G.W.; Grahn, A.R. Limitations of thermodilution curves for cardiac output determinations. Appl. Physiol. 30:643–652; 1971.

    CAS  Google Scholar 

  14. Woods, M.; Scott, R.N.; Harken, A.H. Practical considerations for the use of a pulmonary artery thermistor catheter. Surgery 79:469–475; 1976.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, R.W., Normann, R.A. Signal processing strategies for enhancement of signal-to-noise ratio of thermodilution measurements. Ann Biomed Eng 16, 265–278 (1988). https://doi.org/10.1007/BF02368003

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368003

Keywords

Navigation