Skip to main content
Log in

A model of deposition and embolization of proteins and platelets on biomaterial surfaces

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A theoretical model for the deposition and detachment of protein and platelets on biomaterial surfaces is presented here. This work is an extension of themodel previously reported (12). Two mechanisms of protein and platelet removal are assumed: (1) A characteristic time elapses before adsorbed protein detaches from the surface, carrying away platelets and protein which have deposited on top of it; and (2) thrombi that attain a critical size are subject to hydrodynamic forces which embolize them from the surface. A theoretical distribution of thrombus sizes is assumed. Analysis of the effects of varying model parameters on predicted protein and platelet deposition reveals that the addition of the embolization process does not change the overall structure of the deposition profiles, but does significantly affect the finer details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beissinger, R.L. and E.F. Leonard. Immunoglobulin sorption and desorption rates on quartz: Evidence for multiple sorbed states.ASAIO J. 3:160–175, 1980.

    Google Scholar 

  2. Brash, J.L. and Q.M. Samak. Dynamics of interactions between human albumin and polyethylene surface.J. Colloid Interface Sci. 65:495–504, 1978.

    Article  CAS  Google Scholar 

  3. Butruille, Y.A., E.F. Leonard and R.S. Litwak. Platelet-platelet interactions and non-adhesive encounters on biomaterials.Trans. Am. Soc. Artif. Intern. Organs 21:609–616, 1975.

    CAS  PubMed  Google Scholar 

  4. Christenson, J.T., J. Megerman, K.C. Hanel, G.J. L'Italien, H.W. Strauss and W.M. Abbott. The effect of blood flow rates on platelet deposition in PTFE arterial bypass grafts.Trans. Am. Soc. Artif. Intern. Organs 27:188–191, 1981.

    CAS  PubMed  Google Scholar 

  5. Friedman, L.I. and E.F. Leonard. Platelet adhesion to artificial surfaces: consequences of flow, exposure time, and blood condition and surface nature.Fed. Proc. 30:1641–1646, 1971.

    CAS  PubMed  Google Scholar 

  6. Hahn, G.J., and S.S. Shapiro.Statistical Models in Engineering, New York, Wiley, 1967, pp. 130–134.

    Google Scholar 

  7. Hampton, J.R. and J.R.A. Mitchell, Thrombosis. In:Human Blood Coagulation, Haemostasis and Thrombosis, edited by R. Biggs. Oxford: Blackwell Scientific, 1972, pp. 476–496.

    Google Scholar 

  8. Hanson, S.R., L.A. Harker, B.D. Ratner and A.S. Hoffman. In-vivo evaluation of artificial surfaces with a non-human primate model of arterial thrombosis.J. Lab. Clin. Med. 95:289–304, 1980.

    CAS  PubMed  Google Scholar 

  9. Ihlenfeld, J.V., T.R. Mathis, L.M. Riddle and S.L. Cooper. Measurement of transient thrombus deposition on polymeric materials.Thromb. Res. 14:953–967, 1979.

    Article  CAS  PubMed  Google Scholar 

  10. Kim, S.W. and R.G. Lee. Adsorption of blood proteins onto polymer surfaces.Adv. Chem. Ser. 145:218–229, 1975.

    CAS  Google Scholar 

  11. Lelah, M.D., L.K. Lambrecht and S.L. Cooper. A canine ex vivo series shunt for evaluating thrombus deposition on polymer surfaces.J. Biomed. Mater. Res. 18:475–496, 1984.

    Article  CAS  PubMed  Google Scholar 

  12. Marmur, A. and S.L. Cooper. A model for the depositions and detachment of proteins and platelets on biomaterials.J. Colloid Interface Sci. 89:458–465, 1982.

    Article  CAS  Google Scholar 

  13. Mustard, J.F. The fate of thrombi. InThrombosis, edited by S. Sherry, K.M. Brinkhous, E. Genton and J.M. Stengle. Washington D.C.: Natl. Acad. Sci., 1969, pp. 496–505.

    Google Scholar 

  14. Pitt, W.G. and S.L. Copper. The effect of shear rate upon protein adsorption on polymer surfaces.Trans. Soc. Biomater. 8:28, 1985.

    Google Scholar 

  15. Richardson, P.D. Effect of blood flow velocity on growth rate of platelet thrombi.Nature 245:103–104, 1973.

    Article  CAS  PubMed  Google Scholar 

  16. Rodvien, R., J. Robinson, R.R. Mitchell, P. Litwak and D.C. Price. A new model for in vivo platelet and thrombus kinetics.Adv. Chem. Ser. 199:25–34, 1982.

    CAS  Google Scholar 

  17. Ruckenstein, E., A. Marmur and W.N. Gill. Growth kinetics of platelet thrombi.J. Theor. Biol. 66:147–168, 1977.

    Article  CAS  PubMed  Google Scholar 

  18. Schaffnit, R.S. The effects of surface properties on initial platelet adhesion in vitro, M.S. Thesis, University of Washington, Seattle, 1978.

    Google Scholar 

  19. Soderquist, M.E. and A.G. Walton. Structural changes in proteins adsorbed on polymer surfaces.J. Colloid Interface Sci. 75:386–397, 1980.

    Article  CAS  Google Scholar 

  20. Strong, A.B., D.R. Absolom, W. Zingg, O. Hum, C. Ledain and B.E. Thompson. A new flow cell for platelet adhesion studies.Ann. Biomed. Eng. 10:71–82, 1982.

    CAS  PubMed  Google Scholar 

  21. Young, B.R., L.K. Lambrecht, S.L. Cooper and D.F. Mosher. Plasma proteins: Their role in initiating platelet and fibrin deposition on biomaterials.Adv. Chem. Ser. 199:317–350, 1982.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, R.S., Marmur, A. & Cooper, S.L. A model of deposition and embolization of proteins and platelets on biomaterial surfaces. Ann Biomed Eng 14, 383–400 (1986). https://doi.org/10.1007/BF02367410

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367410

Keywords

Navigation