Skip to main content
Log in

A compartmental model for oxygen-carbon dioxide coupled transport in the microcirculation

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We present a multicompartmental model for an oxygen-carbon dioxide transport system. The compartmental equations and their lumped parameters are derived through space averaging of the corresponding distributed model. The model can predict compartmental distributions of oxygen and carbon dioxide partial pressures, oxygen-hemoglobin saturation, and pH. Other unique features include the effects of the radial distribution of partial pressures and the difference in metabolic rates between vessel wall and tissue. A model for the cat brain, based on this formulation, is compared with results of experiments and with two types of earlier models: one without space averaging and one without carbon dioxide transport. The results suggest that space averaging the convective terms significantly affects the behavior of the model. This is consistent with conclusions from our earlier oxygen-only model. Our observations also demonstrate, however, significant differences between the results from the oxygen-carbon dioxide model and the oxygen-only model. For instance, at low blood flow rates or at low level of oxygen input, predicted oxygen partial pressures can differ by as much as 30% between the two models. Results obtained from the present model are supported by available experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aroesty, J., and J. F. Gross. Convection and diffusion in the microcirculation.Microvasc. Res. 2:247–267, 1970.

    Article  CAS  PubMed  Google Scholar 

  2. Austin, W. H., E. Lacombe, P. W. Rand, and M. Chatterjee. Solubility of CO2 in serum from 15 to 38°.J. Appl. Physiol. 18:301–304, 1963.

    CAS  PubMed  Google Scholar 

  3. Beutler, E., and L. A. Wood. The in vivo regeneration of red cell 2-3-DipHospHoglyceric acid (DPG) after transfusion of stored blood.J. Clin. Lab. Med. 94:300, 1969.

    Google Scholar 

  4. Buerk, D. G., and E. W. Bridges. A simplified algorithm for computing the variation in oxyhemoglobin saturation with PH, PCO2, T and DPG.Chem. Eng. Commun. 47:113–124, 1986.

    CAS  Google Scholar 

  5. Davies, P. W., and D. W. Bronk. Oxygen tension in mammalian brain.Fed. Proc. 16:689–692, 1957.

    CAS  PubMed  Google Scholar 

  6. Duling, B. R., W. Kuschinsky, and M. Wahl. Measurements of the perivascular PO2 in the vicinity of the pial vessels of the cat.Pflügers Arch. 383:29–34, 1979.

    Article  CAS  PubMed  Google Scholar 

  7. Douglas, A. R., N. L. Jones, and J. W. Reed. Calculation of whole blood CO2 content.J. Appl. Physiol. 65:473–477, 1988.

    CAS  PubMed  Google Scholar 

  8. Gleightmann, U., D. H. Ingvar, D. W. Liibbers, B. K. Siesjo, and G. Thews. Tissue PO2 and PCO2 of the cerebral cortex, related to blood gas tensions.Acta Physiol. Scand. 55:127–138, 1962.

    Google Scholar 

  9. Gutierrez, G. The rate of release and its effect on capillary O2 tension: a mathematical analysis.Resp. Physiol. 63:79–96, 1986.

    CAS  Google Scholar 

  10. Hellums, J. D. The resistance to oxygen transport in the capillaries relative to that in the surrounding tissue.Microvasc. Res. 13:131–136, 1977.

    Article  CAS  PubMed  Google Scholar 

  11. Ivanov, K. P., A. N. Derry, E. P. Vovenko, M. O. Samilov, and D. G. Semionov. Direct measurements of oxygen tension at the surface of arterioles, capillaries and venules of the cerebral cortex.Pflügers Arch. 393:118–120, 1982.

    Article  CAS  PubMed  Google Scholar 

  12. Kelman, G. R. Calculation of certain indices of cardiopulmonary function using a digital computer.Resp. Physiol. 1:335–343, 1966.

    CAS  Google Scholar 

  13. Kelman, G. R. Digital computer procedure for the conversion ofPCo 2 into blood CO2 content.Resp. Physiol 3:111–115, 1967.

    CAS  Google Scholar 

  14. Kobari, M., F. Gotoh, Y. Fukuuchi, and K. Tanaka. Blood flow velocity in the pial arteries of cats, with particular reference to the vessel diameter.J. Cerebr. Blood Flow Metab. 4:110–114, 1984.

    CAS  Google Scholar 

  15. Lagerlund, T. D., and P. A. Low. Axial diffusion and Michaelis-Menten kinetics in oxygen delivery in rat peripheral nerve.Am. J. Physiol. 260:R430-R440, 1991.

    CAS  PubMed  Google Scholar 

  16. Lassen, N., A. Ingvar, and D. H. Ingvar. The blood flow of the cerebral cortex determined by radioactive krypton85, Experientia 15:42–43, 1960.

    Google Scholar 

  17. Lee, J. E., F. Chu, J. B. Posner, and F. Plum. Buffering capacity of cerebrospinal fluid in acute respiratory acidosis in dogs.Am. J. Physiol. 217:1035–38, 1969.

    CAS  PubMed  Google Scholar 

  18. Ma, Y. P., A. Koo, H. C. Kwan, and K. K. Chen. On line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat.Microvasc. Res. 8:1–13, 1974.

    Article  CAS  PubMed  Google Scholar 

  19. Meldon, J. H. Computerized analysis of blood-gas equilibria, Part I: CO2 titration of oxygenated whole blood.Chem. Eng. Commun. 27:157–172, 1984.

    CAS  Google Scholar 

  20. Mochizuki, M. Kinetics of oxygen and carbon dioxide reactions. In: The Lung: Scientific Foundations edited by R. G. Crystal and J. B. West. New York, Raven Press, Ltd., 1991, pp. 1241–1250.

    Google Scholar 

  21. Monod, J., J. Wyman, and J. Changeaux. On the nature of allosteric transitions.J. Mol. Biol. 12:88–118, 1965.

    CAS  PubMed  Google Scholar 

  22. Moskalenko, Y. E. Biophysical Aspects of Cerebral Circulation. Oxford, Pergamon Press, 1980.

    Google Scholar 

  23. Nair, P., W. J. Whalen, and D. Buerk.Po 2 of cat cerebral cortex: response to breathing N2 and 100% O2,Microvasc. Res. 9:158–165, 1975.

    Article  CAS  PubMed  Google Scholar 

  24. Nair, P. K., N. S. Huang, and J. D. Hellums. A simple model for prediction of oxygen transport rates by flowing blood in large capillaries.Microvasc. Res. 39:203–211, 1990.

    Article  CAS  PubMed  Google Scholar 

  25. Patton, H. D., A. F. Fuch, B. Hille, A. M. Scher, and R. Steiner. Textbook of Physiology. Philadelphia, W. B. Saunders Company, 1989, p. 952.

    Google Scholar 

  26. Popel, A. S., and J. F. Gross. Analysis of oxygen diffusion from arteriolar network.Am. J. Physiol. 237:H681-H689, 1979.

    CAS  PubMed  Google Scholar 

  27. Popel, A. S. Theory of oxygen transport to tissue.Crit. Rev. Biomed. Eng. 17:257–321, 1989.

    CAS  PubMed  Google Scholar 

  28. Reneau, D. D., Jr., D. F. Bruley, and M. H. Knisely. A mathematical simulation of oxygen release, diffusion, and consumption in the capillaries and tissue of the human brain. In. Chemical Engineering in Medicine and Biology, edited by D. Hershey. New York, Plenum Press, 1967, pp. 135–241.

    Google Scholar 

  29. Reneau, D. D., Jr., D. F. Bruley, and M. H. Knisely. A digital simulation of transient oxygen transport in capillary-tissue systems (cerebral grey matter).AIChE J. 15:916–925, 1969.

    Article  CAS  Google Scholar 

  30. Roth, A. C., and K. Wade. The effects of transmural transport in the microcirculation: a two gas species modelMicrovasc. Res. 32:64–83 1986.

    Article  CAS  PubMed  Google Scholar 

  31. Schacterle, R. S., J. M. Adams, and R. J. Ribando. A theoretical model of gas transport between arterioles and tissue.Microvasc. Res. 41:210–228, 1991.

    Article  CAS  PubMed  Google Scholar 

  32. Severns, M. L., and J. M. Adams. The relation between Krogh and compartmental transport models.J. Theor. Biol. 97:239–249, 1982.

    Article  CAS  PubMed  Google Scholar 

  33. Sharan, M., M. D. Jones, Jr., R. C. Koehler, R. J. Traystman, and A. S. Popel. A compartmental model for oxygen transport in brain microcirculation.Ann. Biomed. Eng. 17:13–38, 1989.

    Article  CAS  PubMed  Google Scholar 

  34. Singh, M. P., M. Sharan, and A. Aminataei. Development of mathematical formulae for O2 and CO2 dissociation curves in the blood.IMA J. Math. Appl. Med. Biol. 6:25–46, 1989.

    Google Scholar 

  35. Stewart, P. A. How to Understand Acid-Base: A Quantitative Acid-Base Primer for Biology and Medicine, First edition: New York, Elsevier, 1981, pp. 110–145.

    Google Scholar 

  36. Ye, G-F., T. W. Moore, and D. Jaron, A compartmental model of oxygen transport derived from a distributed model: treatment of convective and oxygen dissociation properties. In. Proc. IEEE 18th Annu. Northeast Conf. Bioeng., edited by W. J. Ohley, New Jersey, IEEE, Inc., 1992, pp. 83–84.

    Google Scholar 

  37. Ye, G-F., T. W. Moore, D. G. Buerk, and D. Jaron. Coupling of oxygen and carbon dioxide transport in a compartmental model of cat brain. (Abstract) In: Program and abstracts of the Biomedical Engineering Society Third Annual Fall Meeting. Salt Lake City, Utah, 1992, H2.5.

  38. Ye, G-F., T. W. Moore, and D. Jaron. Contributions of oxygen dissociation and convection to the behavior of a compartmental oxygen transport model.Microvasc. Res. 46:1–18, 1993.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Deceased

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, GF., Moore, T.W., Buerk, D.G. et al. A compartmental model for oxygen-carbon dioxide coupled transport in the microcirculation. Ann Biomed Eng 22, 464–479 (1994). https://doi.org/10.1007/BF02367083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367083

Keywords

Navigation