Skip to main content
Log in

Regional persistence of locally unstable predator/prey populations

  • Population Dynamics Of Spider Mites And Predatory Mites-Part 2
  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

Phytoseiid mites are efficient predators capable of completely destroying colonies of spider mites. Thus, coexistence of phytoseiids and their tetranychid prey at a local scale (typically an individual plant) is not likely for more than a single predator/prey cycle. However, the species may coexist at a regional scale, i.e. in a complex environment consisting of many plants, provided local colonisations, extinctions and recolonisations occur asynchronously. This review investigates some of the factors responsible for establishing and maintaining spatial asynchrony between local populations of prey and predators, such as dispersal, environmental heterogeneity and demographic stochasticity. Existing predator/prey models are considered in order to find agreement between theory and empirical data. Based on our current knowledge of spatial processes and their importance for the overall dynamics and persistence of predator/prey interactions, some consequences and aspects for biological control of crop pests by means of natural enemies are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayal, Y., 1987. The foraging strategy ofDiaeretiella rapae. I. The concept of the elementary unit of foraging. J. Animal. Ecol., 56: 1057–1068.

    Google Scholar 

  • Baltensweiler, W., 1968. The cyclic population dynamics of the Grey Larch Tortrix,Zeiraphera griseana Hübner (Lepidoptera: Tortricidae). In: T.R.E. Southwood (Editor), Insect Abundance. Blackwell, Oxford, pp. 88–97.

    Google Scholar 

  • Bernstein, C., 1983. Some aspects ofPhytoseiulus persimilis (Acarina: Phytoseiidae) dispersal behaviour. Entomophaga, 28: 185–198.

    Article  Google Scholar 

  • Bernstein, C., 1984. Prey and predator emigration responses in the acarine systemTetranychus urticae-Phytoseiulus persimilis. Oecologia (Berlin), 61: 134–142.

    Article  Google Scholar 

  • Bernstein, C., 1985. A simulation model for an acarine predator-prey system (Phytoseiulus persimilis-Tetranychus urticae). J. Anim. Ecol., 54: 375–389.

    Google Scholar 

  • Boys, F.E. and Burbutis, P.P., 1972. Influence ofPhytoseiulus persimilis on populations ofTetranychus turkestani at the economic threshold on roses. J. Econ. Entomol., 65: 114–17.

    Google Scholar 

  • Bulmer, M.G., 1976. The theory of prey-predator oscillations. Theor. Popul. Biol., 9: 137–150.

    PubMed  CAS  Google Scholar 

  • Burnett, T., 1970. Effect of temperature on a greenhouse acarine predator-prey population. Can. J. Zool., 48: 555–562.

    Google Scholar 

  • Burnett, T., 1979. An acarine predator-prey population infesting roses. Res. Popul. Ecol., 26: 227–234.

    Google Scholar 

  • Caswell, H., 1978. Predator-mediated coexistence: A nonequilibrium model. Am. Nat., 112: 127–154.

    Article  Google Scholar 

  • Chesson, P., 1978. Predator-prey theory and variability. Annu. Rev. Ecol. Syst., 9: 323–347.

    Article  Google Scholar 

  • Conway, G.R., 1984. Pest and Pathogen Control: Strategic, Tactical, and Policy Models. International Series on Applied Systems Analysis, Vol. 13. Wiley, New York, 488 pp.

    Google Scholar 

  • Crowley, P.H., 1977. Spatially distributed stochasticity and the constancy of ecosystems. Bull. Math. Biol., 39: 157–166.

    Article  PubMed  CAS  Google Scholar 

  • Crowley, P.H., 1981. Dispersal and the stability of predator-prey interactions. Am. Nat., 118: 673–701.

    Article  Google Scholar 

  • DeAngelis, D.L. and Waterhouse, J.C., 1987. Equilibrium and nonequilibrium concepts in ecological models. Ecol. Monogr., 57: 1–21.

    Google Scholar 

  • Den Boer, P.J., 1968. Spreading of risk and the stabilization of animal numbers. Acta Biotheor., 18: 165–194.

    Article  Google Scholar 

  • Dover, M.J., Croft, B.A., Welch, S.M. and Tummala, R.L., 1979. Biological control ofPanonychus ulmi (Acarina: Tetranychidae) byAmblyseiulus fallacis (Acarina: Phyroseiidae) on apple: a prey-predator model. Environ. Entomol., 8: 282–292.

    Google Scholar 

  • Elton, C., 1942. Voles, Mice and Lemmings. Clarendon Press, Oxford, 496 pp.

    Google Scholar 

  • Elton, C. and Nicholson, M., 1942. The ten-year cycle in numbers of the lynx in Canada. J. Anim. Ecol., 11: 215–24.

    Google Scholar 

  • Eveleigh, E.S. and Chant, D.A., 1981. Experimental studies on acarine predator-prey interactions: effects of predator age and feeding history on prey consumption and the functional response (Acarina: Phytoseiidae). Can. J. Zool., 59: 1387–1406.

    Google Scholar 

  • Eveleigh, E.S. and Chant, D.A., 1982. Experimental tudies on acarine predator-prey interactions: the effects of predator density on prey consumption, predator searching efficiency, and the functional response to prey density (Acarine: Phytoseiidae). Can. J. Zool., 60: 611–629.

    Google Scholar 

  • Fernando, M.H.J.P. and Hassell, M.P., 1980. Predator-prey responses in an acarine system. Res. Popul. Ecol., 22: 301–322.

    Google Scholar 

  • Force, D.C., 1967. Effect of temperature on biological control of two-spotted spider mites byPhytoseiulus persimilis. J. Econ. Entomol., 60: 1308–1311.

    Google Scholar 

  • Fransz, H.G., 1974. The functional response to prey density in an acarine system. Simulation Monographs, Pudoc, Wageningen, 143 pp.

    Google Scholar 

  • Fujita, K., 1983. Systems analysis of an acarine predator-prey system. II: Interactions in discontinuous environment. Res. Popul. Ecol., 25: 387–399.

    Google Scholar 

  • Gilpin, M.E., 1975. Group Selection in Predator-Prey Communities. Princeton University Press, Princeton, NJ, 108 pp.

    Google Scholar 

  • Gilpin, M.E., 1979. Spiral chaos in a predator-prey model. Am. Nat., 113: 306–308.

    Article  Google Scholar 

  • Gurney, W.S.C. and Nisbet, R.M., 1978. Predator-prey fluctuations in patchy environments. J. Anim. Ecol., 47: 85–102.

    Google Scholar 

  • Hamai, J. and Huffaker, C.B., 1978. Potential of predation byMetaseiulus occidentalis in compensating for increased, nutritionally induced, power of increase inTetranychus urticae. Entomophaga, 23: 225–237.

    Article  Google Scholar 

  • Hanski, I., 1987. Populations of small mammals cycle — unless they don’t. Trends Ecol. Evol., 2: 55–56.

    Google Scholar 

  • Hassell, M.P., 1978. The Dynamics of Arthropod Predator-Prey Systems. Princeton University Press, Princeton, NJ, 237 pp.

    Google Scholar 

  • Hassell, M.P. and Southwood, T.R.E., 1978. Foraging strategies of insects. Annu. Rev. Ecol. Syst., 9: 75–98.

    Article  Google Scholar 

  • Hastings, A., 1977. Spatial heterogeneity and the stability of predator-prey systems. Theor. Popul. Biol., 12: 37–48.

    PubMed  CAS  Google Scholar 

  • Havelka, J. and Kindlmann, P., 1984. Optimal use of the “pest in first” method for controllingTetranychus urticae Koch (Acarina, Tetranychidae) on glasshouse cucumbers throughPhytoseiulus persimilis A.-H. (Acarina, Phytoseiidae). Z. Angew. Entomol., 98: 254–263.

    Google Scholar 

  • Heads, P.A. and Lawton, J.H., 1983. Studies on the natural enemy complex of the holly leaf-miner: the effects of scale on the detection of aggregative responses and the implications for biological control. Oikos, 40: 267–276.

    Google Scholar 

  • Hilborn, R., 1975. The effect of spatial heterogeneity on the persistence of predator-prey interactions. Theor. Popul. Biol., 8: 346–355.

    PubMed  CAS  Google Scholar 

  • Huffaker, C.B., 1958. Experimental studies on predation: Dispersion factors and predator-prey oscillations. Hilgardia, 27: 343–383.

    Google Scholar 

  • Huffaker, C.B., Shea, K.P. and Herman, S.G., 1963. Experimental studies on predation: Complex dispersion and levels of food in an acarine predator-prey interaction. Hilgardia, 34: 305–330.

    Google Scholar 

  • Huffaker, C.B., van de Vrie, M. and McMurtry, J.A., 1970. II. Tetranychid populations and their possible control by predators: An evaluation. Hilgardia, 40: 391–458.

    Google Scholar 

  • Hussey, N.W. and Parr, W.J., 1963. Dispersal of the glasshouse red spider miteTetranychus urticae Koch (Acarina, Tetranychidae). Entomol. Exp. Appl., 6: 207–214.

    Article  Google Scholar 

  • Hussey, N.W., Parr, W.J. and Gould, H.J., 1965. Observations on the control ofTetranychus urticae Koch on cucumbers by the predatory mitePhytoseiulus riegeli Dosse. Entomol. Exp. Appl., 8: 271–281.

    Article  Google Scholar 

  • Johnson, D.L. and Wellington, W.G., 1984. Simulation of the interactions of predatoryTyphlodromus mites with the European red mite,Panonychus ulmi Koch Res. Popul. Ecol., 26: 30–50.

    Google Scholar 

  • Kareiva, P., 1984. Predator-prey dynamics in spatially structured populations: Manipulating dispersal in a coccinellid-aphid interaction. Lect. Notes Biomath., 54: 388–389.

    Google Scholar 

  • Kareiva, P., 1987. Habitat fragmentation and the stability of predator-prey interactions. Nature, 326: 388–390.

    Article  Google Scholar 

  • Kennedy, G.G. and Smitley, D.R., 1985. Dispersal. In: W. Helle and M.W. Sabelis (Editors), Spider Mites, Their Biology, Natural Enemies, and Control, Vol. 1A. Elsevier, Amsterdam, pp. 233–242.

    Google Scholar 

  • Levin, S.A., 1974. Dispersion and population interactions. Am. Nat., 108: 207–228.

    Google Scholar 

  • Markkula, M. and Tiittaanen, K., 1976. “Pest in first” and “natural infestation” methods in the control ofTetranychus urticae Koch withPhytoseiulus persimilis Athias-Henriot on glass-house cucumbers. Ann. Agric. Fenn., 15: 81–85.

    Google Scholar 

  • May, R.M., 1974. Stability and Complexity in Model Ecosystems. Monographs in Population Biology, 6 (2nd edition) Princeton University Press, 265 pp.

  • Maynard Smith, J., 1974. Models in Ecology. Cambridge University Press, London, 146 pp.

    Google Scholar 

  • Maynard Smith, J., 1976. Group selection. Q. Rev. Biol., 51: 277–283.

    Google Scholar 

  • McMurtry, J.A., 1982. The use of phytoseiids for biological control: Progress and future prospects. In: M.A. Hoy (Editor), Recent Advances in Knowledge of the Phytoseiidae. Univ. of California, Publ. no. 3284, pp. 23–48.

  • McMurtry, J.A. and Johnson, H.G., 1966. An ecological study of the spider miteOligonychus punicae (Hirst) and its natural enemies. Hilgardia, 37: 363–402.

    Google Scholar 

  • McMutrtry, J.A. and Scriven, G.T., 1966. Studies on predator-prey interactions betweenAmblyseiulus hibisci andOligonychus punicae (Acarina: Phytoseiidae, Tetranychidae) under green-house conditions. Ann. Entomol. Soc. Am., 59: 793–800.

    Google Scholar 

  • Mimura, M. and Murray, J.D., 1978. On a diffusive prey-predator model which exhibits patchiness. J. Theor. Biol., 75: 249–262.

    Article  PubMed  CAS  Google Scholar 

  • Murdoch, W.W., 1979. Predation and the dynamics of populations. Fortschr. Zool., 25: 295–310.

    Google Scholar 

  • Murdoch, W.W. and Oaten, A., 1975. Predation and population stability. Adv. Ecol. Res., 9: 1–125.

    Google Scholar 

  • Murdoch, W.W., Reeve, J.D., Huffaker, C.B. and Kennett, C.E., 1984. Biological control of olive scale and its relevance to ecological theory. Am. Nat., 123: 371–392.

    Article  Google Scholar 

  • Murdoch, W.W., Chesson, J. and Chesson, P.L., 1985. Biological control in theory and practice. Am. Nat., 125: 344–366.

    Article  Google Scholar 

  • Nachman, G., 1981a. Temporal and spatial dynamics of an acarine predator-prey system. J. Anim. Ecol., 50: 435–451.

    Google Scholar 

  • Nachman, G., 1981b. A mathematical model of the functional relationship between density and spatial distribution of a population. J. Anim. Ecol., 50: 453–460.

    Google Scholar 

  • Nachman, G., 1984. Estimates of mean population density and spatial distribution ofTetranychus urticae (Acarina: Tetranychidae) andPhytoseiulus persimilis (Acarina: Phytoseiidae) based upon the proportion of empty sampling units. J. Appl. Ecol., 21: 903–913.

    Google Scholar 

  • Nachman, G., 1985. Sampling techniques. In: W. Helle and M.W. Sabelis (Editors), Spider Mites, Their Biology, Natural Enemies, and Control, Vol. 1B. Elsevier, Amsterdam, pp. 175–182.

    Google Scholar 

  • Nachman, G., 1987a. Systems analysis of acarine predator-prey interactions. I. A stochastic simulation model of spatial processes. J. Anim. Ecol., 56: 247–265.

    Google Scholar 

  • Nachman, G., 1987b. Systems analysis of acarine predator-prey interactions. II. The role of spatial processes in system stability. J. Anim. Ecol., 56: 267–281.

    Google Scholar 

  • Nisbet, R.M. and Gurney, W.S.C., 1982. Modelling Fluctuating Populations. Wiley, New York, 379 pp.

    Google Scholar 

  • Patil, G.P. and Joshi, S.W., 1968. A Dictionary and Bibliography of Discrete Distributions. Oliver and Boyd, Edinburgh, 267 pp.

    Google Scholar 

  • Overmeer, W.P.J., 1985. Alternative prey and other food resources. In: W. Helle and M.W. Sabelis (Editors), Spider Mites, Their Biology, Natural Enemies, and Control, Vol. 1B. Elsevier, Amsterdam, pp. 131–139.

    Google Scholar 

  • Poole, R.W., 1974. An Introduction to Quantitative Ecology. McGraw-Hill Kogakusha, 532 pp.

  • Rabbinge, R., 1985. Aspects of damage assessment. In: W. Helle and M.W. Sabelis (Editors), Spider Mites, Their Biology, Natural Enemies, and Control, Vol. 1B. Elsevier, Amsterdam, pp. 261–271.

    Google Scholar 

  • Rosenzweig, M.L., 1971. Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time. Nature, 171: 385–387.

    CAS  Google Scholar 

  • Ryoo, M.I., 1986. Studies on the basic components of the predation ofPhytoseiulus persimilis Athias-Henriot (Acarina: Phytoseiidae). Res. Popul. Ecol., 28: 17–26.

    Google Scholar 

  • Sabelis, M.W., 1981. Biological control of two-spotted spider mites using phytoseiid predators. Part I. Agric. Res. Rep. 910, Pudoc, Wageningen, 242 pp.

    Google Scholar 

  • Sabelis, M.W., 1985. Reproductive strategies. In: W. Helle and M.W. Sabelis (Editors), Spider Mites, Their Biology, Natural Enemies, and Control, Vol 1A. Elsevier, Amsterdam, pp. 265–278.

    Google Scholar 

  • Sabelis, M.W. and Afman, B.P., 1984. Factors initiating or suppressing aerial dispersal ofPhytoseiulus persimilis. Abstracts, 17th International Congress of Entomology, Hamburg, 20–26 August 1984, p. 445.

  • Sabelis, M.W. and Dicke, M., 1985. Long-range dispersal and searching behaviour. In: W. Helle and M.W. Sabelis (Editors), Spider Mites, Their Biology, Natural Enemies, and Control, Vol. 1B. Elsevier, Amsterdam, pp. 141–160.

    Google Scholar 

  • Sabelis, M.W. and Laane, W.E.M., 1986. Regional dynamics of spider-mite populations that become extinct locally because of food source depletion and predation by phytoseiid mites (Acarina: Tetranychidae, Phytoseiidae). In: J.A.J. Metz and O. Diekmann (Editors), Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, 68; Springer, Berlin, pp. 345–375.

    Google Scholar 

  • Sabelis, M.W. and van de Baan, H.E., 1983. Location of distinct spider-mite colonies by phytoseiid predators: Demonstration of specific kairomones emitted byTetranychus urticae andPanonychus ulmi. Entomol. Exp. Appl., 33: 303–314.

    Google Scholar 

  • Sabelis, M.W. and van der Meer, J., 1986. Local dynamics of the interaction between predatory mites and two-spotted spider mites. In: J.A.J. Metz and O. Diekmann (Editors), Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, 68; Springer, Berlin, pp. 322–344.

    Google Scholar 

  • Segel, L.A. and Jackson, J.L., 1972. Dissipative structure: an explanation and an ecological example. J. Theor. Biol., 37: 545–549.

    PubMed  CAS  Google Scholar 

  • Smitley, D.R. and Kennedy, G.G., 1985. Photo-oriented aerial dispersal behaviour ofTetranychus urticae (Acari: Tetranychidae) enhances escape from the leaf surface. Ann. Entomol. Soc. Am., 78: 609–614.

    Google Scholar 

  • Strong, D.R., 1984. Density-vague ecology and liberal population regulation in insects. In: P.W. Price, C.N. Slobodchikoff and W.S. Gaud (Editors), A New Ecology. Wiley, New York, pp. 313–327.

    Google Scholar 

  • Strong, D.R., 1986. Density vagueness: Abiding the variance in the demography of real populations. In: J. Diamond and T.J. Case (Editors), Community Ecology. Harper and Row, New York, pp. 257–268.

    Google Scholar 

  • Takafuji, A., 1977. The effect of the rate of successful dispersal of a phytoseiid mite,Phytoseiulus persimilis Athias-Henriot (Acarina: Phytoseiidae) on the persistence in the interactive system between the predator and its prey. Res. Popul. Ecol., 18: 210–222.

    Google Scholar 

  • Takafuji, A. and Chant, D.A., 1976. Comparative studies of two species of predacious phytoseiid mites (Acarina: Phytoseiidae), with special reference to their responses to the density of their prey. Res. Popul. Ecol., 17: 255–310.

    Google Scholar 

  • Takafuji, A., Inoue, T. and Fujita, K., 1981. Analysis of an acarine predator-prey system in glass-house. In: 1st Japan/USA symposium on IPM, Tsukuba, (Japan) 29–30 September 1981, pp. 144–153.

  • Takaufuji, A., Tsuda, Y. and Miki, T., 1983. System behaviour in predatory-prey interaction, with special reference to acarine predator-prey system. Res. Popul. Ecol., Suppl. 3: 75–92.

    Google Scholar 

  • Taylor, L.R., 1961. Aggregation, variance and the mean. Nature, 189: 732–735.

    Google Scholar 

  • Vandermeer, J.H., 1973. On the regional stabilization of locally unstable predator-prey relationships. J. Theor. Biol., 41: 161–170.

    Article  PubMed  CAS  Google Scholar 

  • Waage, J.K., 1979. Foraging for patchily-distributed hosts by the parasitoid,Nemeritis canescens. J. Anim. Ecol., 48: 353–371.

    Google Scholar 

  • Wade, M.J., 1978. A critical review of the models of group selection. Q. Rev. Biol., 53: 101–114.

    Article  Google Scholar 

  • Wollkind, D.J. and Logan, J.A., 1978. Temperature-dependent predator-prey mite ecosystem on apple tree foliage. J. Math. Biol., 6: 265–283.

    Google Scholar 

  • Zeigler, B.P., 1977. Persistence and patchiness of predator-prey systems induced by discrete event population exchange mechanisms. J. Theor. Biol., 67: 687–713.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nachman, G. Regional persistence of locally unstable predator/prey populations. Exp Appl Acarol 5, 293–318 (1988). https://doi.org/10.1007/BF02366099

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02366099

Keywords

Navigation