Skip to main content
Log in

Methods of invariant analysis for linear control systems

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Yu. H. Andreev, “Algebraic methods of the state space in the theory of control of linear objects (review of foreign literature),”Avtomat. Telemekh., No. 3, 5–50 (1977).

    MATH  Google Scholar 

  2. I. K. Asmykovich, R. Gabasov, F. M. Kirillova, and V. M. Marchenko, “Control of finite-dimensional systems,”Avtomat. Telemekh., No. 11, 5–29 (1986).

    MathSciNet  Google Scholar 

  3. V. E. Belozerov and G. V. Mozhaev, “On the uniqueness of the solutions of problems of decomposition and aggregation of linear automatic control systems,” In:Theory of Complex Systems and Their Simulation Methods [in Russian], VINIISI, Moscow (1982), pp. 4–13.

    Google Scholar 

  4. V. E. Belozerov and G. V. Mozhaev, “On the decomposition of linear stationary automatic control systems,”Kibern. Vyshisl. Tekh., (Kiev), No. 54, 10–16 (1982).

    Google Scholar 

  5. E. B. Vinberg and V. L. Papov, “Invariant theory,” In:Progress in Science and Technology. Series on Contemporary Problems in Mathematics. Fundamental Trends, [in Russian], Vol. 55, VINITI, Akad. Nauk SSSR, Moscow (1989), pp. 137–314.

    Google Scholar 

  6. F. R. Gantmahker,Matrix Theory [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  7. V. V. Krylov, “Construction of models of the internal structure of dynamic systems from input-output relations (abstract realization theory). Parts I, II,”Avtomat. Telemekh., No. 2, 5–15 (1984); No. 3, 5–19 (1984).

    MATH  Google Scholar 

  8. N. I. Osetinskii, “On the theory of realization of linear stationary dynamic systems over a field. I, II, III,”Programmirovanie, No. 3, 75–85 (1975); No. 4, 58–68 (1975); No. 1, 70–76 (1976).

    MathSciNet  Google Scholar 

  9. N. I. Osetinskii, “Certain results of the modern systems theory: A review,” In:Mathematical Methods of the Systems Theory [in Russian], Mir, Moscow (1979), pp. 271–327.

    Google Scholar 

  10. N. I. Osetinskii, “On the basis of invariants of linear controlled systems,” In:Theory of Complex Systems and Their Simulation Methods [in Russian], VINIISI, Moscow (1988), pp. 76–81.

    Google Scholar 

  11. N. I. Osetinskii, “Certain results and methods of the modern linear systems theory: A review,” In:Theory of Systems. Mathematical Methods and Simulation [in Russian], Mir, Moscow (1989), pp. 328–379.

    Google Scholar 

  12. Ya. I. Roitenberg,Automatic Control [in Russian], Nauka, Moscow (1992).

    Google Scholar 

  13. R. G. Faradzhev,Linear Sequential Machines [in Russian], Sov. Radio, Moscow (1975).

    Google Scholar 

  14. I. R. Shafarevich,Basic Algebraic Geometry [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  15. M. Aigner,Combinatorial Theory, Springer-Verlag, Berlin (1979).

    Google Scholar 

  16. B. D. O. Anderson, M. A. Arbib, and E. G. Manes, “Foundations of system theory: finitary and infinitary conditions,”Lect. Notes Econ. Math. Sys.,115 Springer-Verlag, Berlin (1979).

    Google Scholar 

  17. B. D. O. Anderson, N. K. Bose, and E. I. Jury, “Output feedback stabilization and related problems —solution via decision algebra methods,”IEEE Trans. Autom. Contr.,20, 53–66 (1975).

    MathSciNet  Google Scholar 

  18. B. D. O. Anderson and D. G. Luenberger, “Design of multivariable feedback systems,”Proc. IEEE,114, No. 6, 395–399 (1967).

    Google Scholar 

  19. B. D. O. Anderson and R. W. Scott, “Output feedback stabililization—solution by algebraic geometry methods,”Proc. IEEE,65, No. 6, 849–861 (1977).

    Google Scholar 

  20. M. A. Arbib, “Coproducts and group machines,”J. Comp. Syst. Sci.,7, 278–287 (1973).

    MATH  MathSciNet  Google Scholar 

  21. M. A. Arbib and E. G. Manes, “Foundations of system theory: decomposable systems,”Automatica, No. 10, 285–302 (1974).

    Article  MathSciNet  Google Scholar 

  22. M. A. Arbib and E. G. Manes, “Machines in a category: an expository introduction,”SIAM Rev.,16, 163–192 (1974).

    Article  MathSciNet  Google Scholar 

  23. M. A. Arbib and H. P. Zeiger, “On the relevance of abstract algebra to control theory,”Automatica,5, 589–606 (1969).

    Article  MathSciNet  Google Scholar 

  24. L. Baratchart, “On the parametrization of linear constant systems,”SIAM J. Contr. Optimiz.,23, No. 5, 752–773 (1985).

    MATH  MathSciNet  Google Scholar 

  25. R. R. Bitmead, S. Y. Kung, B. D. O. Anderson, and T. Kailath, “Greatest common divisors via generalized Sylvester and Besout matrices,”IEEE Trans. Autom. Contr.,23, 1043–1047 (1978).

    Article  MathSciNet  Google Scholar 

  26. F. M. Brasch and J. B. Pearson, “Pole placement using dynamic compensators,”IEEE Trans. Autom. Contr.,15, No. 1, 34–43 (1970).

    MathSciNet  Google Scholar 

  27. R. Brockett, “Some geometric questions in the theory of linear systems,”IEEE Trans. Autom. Contr.,21, No. 1, 449–455 (1976).

    MATH  MathSciNet  Google Scholar 

  28. R. Brockett, “The geometry of the set of controllable systems,”Res. Report Autom. Contr. Lab., Nagoya Univ.,24, 1–7 (1977).

    MathSciNet  Google Scholar 

  29. R. Brockett and C. I. Byrnes, “Multivariable Nyquist criteria, root loci and pole placement: A geometric viewpoint,”IEEE Trans. Autom. Contr.,26, No. 1, 271–284 (1981).

    MathSciNet  Google Scholar 

  30. P. Brunovsky, “A classification of linear controlled systems,”Kibernetika,6, No. 3, 173–188 (1970).

    MATH  MathSciNet  Google Scholar 

  31. C. I. Byrnes, “The moduli space for linear dynamical systems,” In:Geometric Control Theory, Math. Sci. Press, Brookline, Massachusetts (1977), pp. 229–276.

    Google Scholar 

  32. C. I. Byrnes, “On the control of certain deterministic infinite dimensional systems by algebro-geometric techniques,”Amer. J. Math.,100, 1333–1381 (1979).

    MathSciNet  Google Scholar 

  33. C. I. Byrnes, “On certain problems of arithmetic arising in the realization of linear systems with symmetries,”Asterisque,75,76, 57–65 (1980).

    MATH  MathSciNet  Google Scholar 

  34. C. I. Byrnes, “Algebraic and geometric aspects of the analysis of feedback systems,” In:Geometric Methods in Linear Systems Theory, North-Holland, Amsterdam (1980), pp. 85–124.

    Google Scholar 

  35. C. I. Byrnes, “Control theory, inverse spectral problems, and real algebraic geometry,” In:Diff. Geom. Methods in Control Theory, Birkhauser, Boston (1982).

    Google Scholar 

  36. C. I. Byrnes, “On the stabilization of the multivariable systems and the Ljusternik-Snirel'mann category of real Grassmannians,”Syst. Contr. Lett.,3, 255–266 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  37. C. I. Byrnes, “Pole assignment by output feedback,” In:Lect. Notes Contr. Inform. Sci.,135, Springer-Verlag (1989), pp. 31–78.

  38. C. I. Byrnes and B. D. O. Anderson, “Output feedback and generic stabilizability,”SIAM J. Contr. Optimiz. 22, No. 3, 362–380 (1984).

    MathSciNet  Google Scholar 

  39. C. I. Byrnes and T. E. Duncan, “On certain topological invariants arising in system theory,” In:New Directions in Appl. Math., Springer-Verlag, New York (1982), pp. 29–71.

    Google Scholar 

  40. C. I. Byrnes and P. Falb, “Applications of algebraic geometry in system theory,”Amer. J. Math.,101, 337–363 (1979).

    MathSciNet  Google Scholar 

  41. C. I. Byrnes and U. Helmke, “Intersection theory for linear systems,” In:Proc. 25th IEEE Conf. Decision and Contr., Athens (1986), pp. 1944–1949.

  42. C. I. Byrnes and N. E. Hurt, “On the moduli of linear dynamical systems,”Adv. Math. Studies Anal., No. 4, 83–122 (1979).

    MathSciNet  Google Scholar 

  43. C. I. Byrnes and P. K. Stevens, “Global properties of root-locus map,” In:Lect. Notes Contr. Inf. Sci.,39, Springer-Verlag (1982), pp. 9–25.

  44. D. F. Delchamps, “Global structure of families of multivariable linear systems with an application to identification,”Math. Syst. Theory,18, 329–380 (1985).

    Article  MathSciNet  Google Scholar 

  45. S. Eilenberg, “Automata, Languages and Machines, Vol. A, Academic Press, New York (1974).

    Google Scholar 

  46. C. Ehresmann, “Sur la topologie de certains espace homogenes,”Ann. Math.,35, 396–443 (1934).

    MATH  MathSciNet  Google Scholar 

  47. G. D. Forney, “Minimal bases of rational vector spaces with applications to multivariable linear systems,”SIAM J. Contr. Optimiz.,13, 493–520 (1975).

    MATH  MathSciNet  Google Scholar 

  48. P. Fuhrmann, “Algebraic system theory: An analyst's point of view,”J. Franklin Inst.,301, 521–540 (1976).

    MATH  MathSciNet  Google Scholar 

  49. B. K. Ghosh, “Transcendental and interpolation methods in simultaneous stabilization and simultaneous partial pole placement problems,”SIAM J. Contr. Optimiz.,24, 1091–1109 (1986).

    MATH  Google Scholar 

  50. C. G. Gibson, Wirthmuller K., et al.,Lect. Notes Math.,552, Springer-Verlag (1977).

  51. J. M. Gracia, I. De Hoyos, and I. Zaballa, “A characterization of feedback equivalence,”SIAM J. Contr. Optimiz. 28, No. 5, 1103–1112 (1990).

    Google Scholar 

  52. M. K. J. Hautus, “Controllability and observability conditions of linear autonomous systems,” In:Proc. Kon. Nederlande Akademie van Wetenschappen, Amsterdam (1969), Ser. A. 72, No. 5, pp. 443–448.

  53. M. K. J. Hautus, “Stabilization, controllability, and observability of linear autonomous systems,” In:Proc. Kon. Nederlande Akademic van Wetenschappen, Amsterdam (1970), Ser. A. 73, No. 5, pp. 448–455.

  54. M. K. J. Hautus and E. Sontag, “New results on pole-shifting for parametrized families of systems,”J. Pure Appl. Algebra,40, 229–244 (1986).

    Article  MathSciNet  Google Scholar 

  55. M. Hazewinkel, “Moduli and canonical forms of linear dynamical systems II: The topological case,”Math. Syst. Theory,10, 363–385 (1977).

    MATH  MathSciNet  Google Scholar 

  56. M. Hazewinkel, “Moduli and canonical forms for linear dynamical systems III: The algebraic geometric case,” In:Proc. NASA-AMS Conf. on Geom. Contr. Theory, Math. Sci. Press (1977), pp. 291–336.

  57. M. Hazewinkel, “On the (internal) symmetry groups of linear dynamical systems,” In:Groups, Systems and Many-Body Physics, Viewe (1979), pp. 362–404.

  58. M. Hazewinkel, “(Fine) moduli (spaces) for linear systems: What are they and what are they good for,” In:Proc. NATO-AMS Adv. Study Inst., Reidel Publ. (1979), pp. 125–193.

  59. M. Hazewinkel, “On families of linear dynamical systems: degeneracy phenomena,” In:Proc. NATO-AMS Conf. Algebraic and Geometric Meth. Linear Syst. Theory (1979), pp. 157–190.

  60. M. Hazewinkel, “A partial survey of the uses of algebraic geometry in systems and control theory,” In:Sym. Math. INDAM (Severi Centennial Conference, 1979), Academic Press (1981), pp. 245–292.

  61. M. Hazewinkel, “Lectures on invariants, representations and Lie algebras in systems and control theory,” In:Lect. Notes Math.,1029, Springer-Verlag (1984), pp. 1–36.

  62. M. Hazewinkel and R. E. Kalman, “On invariants, canonical forms and moduli for linear, constant, finite dimensional dynamical systems,” In:Lect. Notes Econ. Math. Syst. Theory,131, Springer-Verlag (1976), pp. 48–60.

  63. M. Hazewinkel and C. Martin, “Representations of the symmetric group, the specialization order, systems and the Grassmann manifold,”L'Enscign. Math.,29, 53–87 (1983).

    MathSciNet  Google Scholar 

  64. M. Hazewinkel and C. Martin, “Symmetric linear systems: an application of algebraic systems theory,”Int. J. Contr.,37, 1371–1384 (1983).

    MathSciNet  Google Scholar 

  65. M. Hazewinkel and C. Martin, “Special structure, decentralizations and symmetry for linear systems,”Lect. Notes Contr. Inform. Sci.,58, Springer-Verlag (1984), pp. 437–440.

  66. M. Hazewinkel and A. M. Perdon, “On the theory of families of linear dynamical systems,” In:Proc. MTNS'79 (1979), pp. 155–161.

  67. U. Helmke, “Topology of the, moduli space for reachable linear dynamical systems: The complex case,”Math. Syst. Theory, No. 19, 155–187 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  68. U. Helmke, “Linear dynamical systems and instantons in Yang-Mills theory,”IMA J. Math. Contr. Inf.,3, 151–166 (1986).

    MATH  Google Scholar 

  69. U. Helmke, “A global parametrization of asymptotically stable linear systems,”Syst. Contr. Lett.,13, (1989).

  70. U. Helmke, “The cohomology of moduli spaces of linear dynamical systems,” In:Habilitatiosschrift, Regensburg Univ., (1990), pp. 1–163.

  71. R. Hermann and C. Martin, “Application of algebraic geometry to systems theory: Part, I,”IEEE Trans. Autom. Contr.,22, 19–25 (1977).

    MathSciNet  Google Scholar 

  72. R. Hermann and C. Martin, “Application of algebraic geometry to systems theory: Part II: The McMillan degree and Kronecker indices as topological and holomorphic invariants,”SIAM J. Contr. Optimiz.,16, 743–755 (1978).

    MathSciNet  Google Scholar 

  73. M. Heymann, “Pole assignment in multi-input linear systems,”IEEE Trans. Autom. Contr.,13, No. 6, 748–749 (1968).

    MathSciNet  Google Scholar 

  74. H. I. Hiller, “On the height of the first Stiefel-Whitney class,”Proc. Amer. Math. Soc.,79, 495–498 (1980).

    MATH  MathSciNet  Google Scholar 

  75. D. Hinrichsen and D. Prätzel-Wolters, “Generalized Hermite matrices and complete invariants of strict system equivalence,”SIAM J. Contr. Optimiz.,21, 298–305 (1983).

    Article  Google Scholar 

  76. D. Hinrichsen and D. Prätzel-Wolters, “A canonical form for static linear output feedback,”Lect. Notes Contr. Inf. Sci.,58, 441–462 (1984).

    Google Scholar 

  77. D. Hinrichsen and D. Prätzel-Wolters, “A Jordan canonical form for reachable linear systems,”Linear Algebra Appl.,122–124, 143–175 (1989).

    Google Scholar 

  78. B. L. Ho and R. E. Kalman, “Effective construction of linear state variable models from input/output functions,”Regelungstechnik,14, 545–548 (1966).

    Google Scholar 

  79. T. Kailath,Linear Systems, Prentice-Hall, Englewood Cliffs, New Jersey (1980).

    Google Scholar 

  80. R. E. Kalman, “Canonical structure of linear dynamical systems,”Proc. Natl. Acad. Sci. USA,48, No. 4, 596–600 (1962).

    MATH  MathSciNet  Google Scholar 

  81. R. E. Kalman, “Mathematical description of linear dynamical systems,”SIAM J. Contr. Optimiz,1, 152–192 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  82. R. E. Kalman, “Kronecker invariants and feedback,” In:Proc. Conf. Ordinary Diff. Eqs., Washington (1971), pp. 459–471.

  83. R. E. Kalman, “Algebraic geometric description of the class of linear systems of constant dimension”, In:8th Annual Princeton Conf. Inform. Sci. Systs., Princeton, New Jersey (1974).

  84. R. E. Kalman, P. Falb, and M. A. Arbib,Topics in Mathematical System Theory, McGraw Hill, New York (1965).

    Google Scholar 

  85. H. Kimura, “Pole assignment by gain output feedback,”IEEE Trans. Autom. Contr.,20, 509–516 (1975).

    Article  MATH  Google Scholar 

  86. H. Kimura, “A further result on the problem of pole assignment by output feedback,”IEEE Trans. Autom. Contr.,22, 509–516 (1977).

    Google Scholar 

  87. H. Kraft,Geometrische Methoden in der Invariaten Theorie, Vieweg, Braunschweig-Wiesbaden (1984).

    Google Scholar 

  88. P. S. Krishnaprasad and C. Martin, “On families of systems and deformations”Int. J. Contr.,38, No. 5, 1055–1079 (1983).

    MathSciNet  Google Scholar 

  89. C. E. Langenhop, “On the stabilization of linear systems,”Proc. Amer. Math. Soc.,15, No. 5, 735–742 (1964).

    MATH  MathSciNet  Google Scholar 

  90. V. G. Lomadze, “Finite dimensional time invariant linear dynamical systems. Algebraic theory,”Acta Appl. Math.,19, 149–201 (1990).

    MATH  MathSciNet  Google Scholar 

  91. D. G. Luenberger, “Canonical forms for linear multivariable systems,”IEEE Trans. Autom. Contr.,12, No. 3, 290–293 (1967).

    MathSciNet  Google Scholar 

  92. A. G. J. MacFarlane, “Linear multivariable feedback theory: a survey,”Automatica,8, 455–492 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  93. A. G. J. MacFarlane, “Trends in linear multivariable feedback control theory,”Automatica,2, 273–277 (1973).

    Google Scholar 

  94. W. Massey,Homology and Cohomology Theory, Marcel Dekker, New York (1978).

    Google Scholar 

  95. D. Q. Mayne, “A canonical model for identification of multivariable systems,”IEEE Trans. Autom. Contr.,17, 728–729 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  96. B. McMillan, “Introduction to formal realizability theory,”Bell System Tech. J.,31, 217–279, 591–600 (1952).

    MathSciNet  Google Scholar 

  97. A. S. Morse, “Ring models for delay-differential systems,”Automatica,12, 529–531 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  98. D. Mumford,Algebraic Geometry. I: Complex Projective Varieties, Springer-Verlag, New York (1976).

    Google Scholar 

  99. D. Mumford and J. Fogarty,Geometric Invariant Theory, Springer-Verlag, Berlin (1982).

    Google Scholar 

  100. P. E. Newstead,Introduction to Moduli Problems and Orbit Spaces, Tata Inst. of Fund. Research, Bombay (1978).

    Google Scholar 

  101. V. M. Popov, “Hyperstability and optimality of automatic systems with several control functions,”Rev. Roum. Sci. Electrotech. Energ.,9, 629–690 (1964).

    Google Scholar 

  102. V. M. Popov, “Invariant description of linear time invariant controllable systems,”SIAM J. Contr. Optimiz.,10, 252–264 (1972).

    Article  MATH  Google Scholar 

  103. I. Postlethwaite and A. G. J. MacFarlane, “A complex variable approach to the analysis of linear multivariable feedback systems,”Lect. Notes Contr. Inform. Sci.,12, Springer-Verlag (1979).

  104. I. Postlethwaite, A. G. J. MacFarlane, and J. M. Edmunds, “Principal gains and principal phases in the analysis of linear multivariable feedback systems,”IEEE Trans. Autom. Contr.,26, 32–46 (1981).

    Article  MathSciNet  Google Scholar 

  105. C. Processi, “The invariant theory of n×n-matrices,”Adv. Math.,19, 306–381 (1976).

    Google Scholar 

  106. R. Rado, “A theorem on independence relations,”Q. J. Math. 13, 83–89 (1962).

    Google Scholar 

  107. H. H. Rosenbrock,State Space and Multivariable Theory, Wiley, New York (1970).

    Google Scholar 

  108. J. Rosenthal, “Tuning natural frequencies of output feedback,” In:Computation and Control, Birkhäuser, Boston (1989), pp. 276–282.

    Google Scholar 

  109. J. Rosenthal, “New results in pole assignment by real output feedback,”SIAM J. Contr. Optimiz.,30, No. 1, 203–211 (1992).

    MATH  Google Scholar 

  110. J. Rosenthal, “A compactification of the space of multivariable systems using geometric invariant theory,”J. Math. Systems, Estimation, Contr.,1, 111–121 (1992).

    Google Scholar 

  111. Y. Rouchaleau and E. Sontag, “On the existence of minimal realizations of linear dynamical systems over Noetherian integral domains,”J. Comp. Syst. Sci.,18, 65–75 (1979).

    MathSciNet  Google Scholar 

  112. Y. Rouchaleau and B. Wyman, “Linear dynamical systems, over integral domains,”J. Comp. Syst. Sci.,9, No. 2, 129–142 (1974).

    MathSciNet  Google Scholar 

  113. Y. Rouchaleau and B. Wyman, and R. E. Kalman, “Algebraic structure of linear dynamical systems III. Realization theory over commutative rings,”Proc. Natl. Acad. Sci. USA.,69, 3404–3406 (1972).

    MathSciNet  Google Scholar 

  114. H. Seraji, “Design of pole placement compensators for multivariable systems,”Automatica,16, 335–338 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  115. E. Sontag, “Linear systems over commutative rings: A survey,”Ric. Autom.,7, 1–34 (1976).

    Google Scholar 

  116. T. A. Springer, “The unipotent variety of a semisimple group,” In:Proc. Bombay Coll. Algebr. Geometry (1969), pp. 379–391.

  117. R. Steinberg, “Desingularization on the unipotent variety,”Invent. Math., 209–224 (1976).

  118. A. Tannenbaum, “Invariance and system theory: Algebraic and geometric aspects,”Lect. Notes Math.,845, Springer-Verlag (1981).

  119. M. Vidyasagar, H. Schneider, and B. A. Francis, “Algebraic and topological aspects of feedback stabilization,”IEEE Trans. Autom. Contr.,27, No. 4, 880–894 (1982).

    MathSciNet  Google Scholar 

  120. X.-C. Wang, “Géometric inverse eigenvalue problems,” In:Computation and Control, Birkhäuser, Boston (1983).

    Google Scholar 

  121. H. Whitney,Complex Analytic Varieties, Addison-Wesley, Reading, Massachusetts (1972).

    Google Scholar 

  122. J. C. Willems, “From time series to linear systems,”Automatica,22 (1986); No. 5, 561–580 (1986); No. 6, 675–694 (1986);23, No. 1, 87–115 (1987).

  123. J. C. Willems and W. H. Hesselink, “Generic properties of the pole-placement, problem,” In:Proc. 7th IFAC Congr. (1978), pp. 1725–1729.

  124. W. M. Wonham,Linear Multivariable Control: A Geometric Approach, Springer-Verlag, New York (1979).

    Google Scholar 

  125. W. M. Wonham and A. S. Morse, “Decoupling and pole assignment in linear multivariable systems: a geometric approach,”SIAM J. Contr.,8, No. 1, 1–18 (1970).

    MathSciNet  Google Scholar 

  126. W. M. Wonham and A. S. Morse, “Feedback invariants of linear multivariable systems,”Automatica,8, No. 1, 93–100 (1972).

    MathSciNet  Google Scholar 

  127. B. F. Wymen, “Pole placement over integral domains,”Commun. Algebra,6, 969–993 (1976).

    Google Scholar 

Download references

Authors

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 29, Optimizatsiya i Upravlenie-1, 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osetinskii, N.I. Methods of invariant analysis for linear control systems. J Math Sci 88, 587–657 (1998). https://doi.org/10.1007/BF02364664

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02364664

Keywords

Navigation