Skip to main content
Log in

Effects of changes in pulmonary perfusion and surface area on endothelial ace activity

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Measurement of transport or enzymatic processes associated with pulmonary endothelial cells could provide unique information regarding the physiologic function of the microcirculation as well as data describing the biochemical integrity of these cells in acute lung injury. Since an important goal of such measurements is to quantify the kinetics of reactions of substrates (indicators) with the endothelium, it would be highly advantageous to account for (convective) phenomena related to blood flow and its distribution which also influence whole organ metabolism. In the present report, we describe studies that have utilized a nonlinear model of organ metabolism to estimate Vmax, the apparent maximal velocity and Km, concentration at one-half Vmax of angiotensin-converting enzyme (ACE) activity. Our hypotheses have been that (a) there is sufficient data to calculate apparent kinetic constants from indicator-dilution outflow curves after injection into the pulmonary circulation of a radiolabelled synthetic substrate for ACE, and (b) Vmax for ACE is a property related to the amount of enzyme located on the endothelial cells, and as such, should be directly proportional to perfused surface area of an organ. In isolated perfused rabbit lungs, when flow was increased over a two-fold range, but surface area was unchanged, neither Vmax nor Km for ACE activity was significantly altered. When indicator-dilution measurements of pulmonary ACE activity were made in lambs from 1–171 days of age there was a progressive increase in Vmax with no significant change in Km as a function of age. The increase in Vmax was closely correlated with an independent measure of surface area, carbon monoxide diffusing capacity, and a morphometric measure of capillary endothelial cell surface area (stereology at electron microscopic level) made at post-mortem. These experimental observations in whole organs support our hypotheses and predictions regarding the metabolism or removal of substrates from the circulation by means of a saturable process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashton, J.H., B.R. Pitt, and C.N. Gillis. Apparent kinetics of angiotensin converting enzyme: hydrolysis of [3H]benzoyl-phenylalanyl-alanyl-proline in the isolated perfused lung.J. Pharmacol. Exp. Ther. 232:602–607, 1985.

    CAS  PubMed  Google Scholar 

  2. Beck, K.C. and S.J. Lai-Fook. Pulmonary blood flow vs. gas volumes at various perfusion pressures in rabbit lung.J. Appl. Physiol. 58:2004–2010, 1985.

    CAS  PubMed  Google Scholar 

  3. Brigham, K., R.E. Parker, R.J. Roselli, J. Hobson, and T.R. Harris. Exchange of macromeolecules in the pulmonary microcirculation.Ann. N.Y. Acad. Sci. 384:246–264, 1982.

    CAS  PubMed  Google Scholar 

  4. Bronikowski, T.A., C.A. Dawson, J.H. Linehan, and D.A. Rickaby. A mathematical model of indicator extraction by the pulmonary endothelium via saturation kinetics.Math Biosci. 61:237–266, 1982.

    Article  Google Scholar 

  5. Burri, P. Development and growth of the human lung. Fishman, A.P.; Fisher, A.B., eds.Handbook of Physiology, vol. 1, section 3. Maryland: American Physiological Society, 1985, 1–46.

    Google Scholar 

  6. Catravas, J.D. and C.N. Gillis. Metabolism of3H-benzoyl-phenylalanyl-alanyl-proline by pulmonary angiotensin converting enzyme in vivo: effects of bradykinin, SQ 14225 or acute hypoxia.J. Pharmacol. Exp. Ther. 217:263–270, 1981.

    CAS  PubMed  Google Scholar 

  7. Catravas, J.D. and R.E. White. Kinetics of pulmonary angiotensin converting enzyme and 5′-nucleotidasein vivo.J. Appl. Physiol. 57:1173–1181, 1984.

    CAS  PubMed  Google Scholar 

  8. Dawson, C.A., D.J. Grimm, and J.H. Linehan. Effects of lung inflation on the distribution of pulmonary vascular resistance.J. Appl. Physiol. 43:1089–1092; 1977.

    CAS  PubMed  Google Scholar 

  9. Dawson, C.A., C.W. Christensen, D.A. Rickaby, J.H. Linehan, and M.R. Johnston. Lung damage and pulmonary uptake of serotonin in intact dogs.J. Appl. Physiol. 58:1761–1766, 1985.

    CAS  PubMed  Google Scholar 

  10. Dobuler, K.D., J.D. Catravas, and C.N. Gillis. Hyperoxic lung injury and altered metabolic functions in the conscious rabbit.Am. Rev. Resp. Dis. 126:534–539, 1982.

    CAS  PubMed  Google Scholar 

  11. Fanburg, B.L. and J.B. Glazier. Conversion of angiotensin I to angiotensin II in the isolated perfused dog lung.J. Appl. Physiol. 35:325–331, 1973.

    CAS  PubMed  Google Scholar 

  12. Gillis, C.N. and J.D. Catravas. Altered removal of vasoactive substances in the injured lung: detection of lung microvascular injury.Ann. N.Y. Acad. Sci. 384:458–474, 1982.

    CAS  PubMed  Google Scholar 

  13. Glazier, J.B., J.M.B. Hughes, J.E. Maloney, and J.B. West. Measurements of capillary dimensions and blood volume in rapidly frozen lungs.J. Appl. Physiol. 26:65–76, 1969.

    CAS  PubMed  Google Scholar 

  14. Hakim, T.S., R.P. Michel, and H.K. Chang. Effect of lung inflation on pulmonary vascular resistance by arterial and venous occlusion.J. Appl. Physiol. 53:1110–1115, 1982.

    CAS  PubMed  Google Scholar 

  15. Harris, T.R. and Brigham, K.L. The exchange of small molecules as a measure of normal and abnormal lung microvascular function.Ann. N.Y. Acad. Sci. 384:417–433, 1982.

    CAS  PubMed  Google Scholar 

  16. Harris, T.R. Influence of endothelial volume on kinetics of reacting indicators in the lung.J. Appl. Physiol. 57:1528–1530, 1984.

    CAS  PubMed  Google Scholar 

  17. Havill, A.M., D. Riggs, B.R. Pitt, and C.N. Gillis. Pulmonary injury and altered metabolic function following intratracheal instillation of phorbol myristate acetate.Am. Rev. Resp. Dis. 133:A19, 1986 (Abstract).

    Google Scholar 

  18. Howell, R.E., R. Moalli, and C.N. Gillis. Analysis of rabbit pulmonary angiotensin converting enzyme kineticsin vivo.J. Pharmacol. Exp. Ther. 228:154–160, 1984.

    CAS  PubMed  Google Scholar 

  19. Huxtable, R., D. Ciaramitaro, and D. Eisenstein. The effect of a pyrrolizidine alkaloid, monocrotaline, and a pyrrole, dehydroetronecine, on the biochemical functions of the pulmonary endothelium.Mol. Pharmacol. 14:1189–1203, 1978.

    CAS  PubMed  Google Scholar 

  20. Jackson, R.M. and J.B. Pisarello. Hypoxia pre-adaptation prevents oxygen-induced depression of lung angiotensin-converting enzyme.Am. Rev. Resp. Dis. 126:534–539, 1984.

    Google Scholar 

  21. Jackson, R.M., A.J. Narkates, and S. Oparil. Impaired pulmonary conversion of angiotensin I to angiotensin II in rats exposed to chronic hypoxia.J. Appl. Physiol. 60:1121–1127, 1986.

    CAS  PubMed  Google Scholar 

  22. Lazo, J.S., J.D. Catravas, and C.N. Gillis. Serum and pulmonary angiotensin converting enzyme activity in rabbit following bleomycin treatment.Biochem. Pharmacol. 30:2577–2584, 1981.

    Article  CAS  PubMed  Google Scholar 

  23. Linehan, J.H. and C.A. Dawson. A kinetic model of prostaglandin metabolism in the lung.J. Appl. Physiol. 47:404–411, 1979.

    CAS  PubMed  Google Scholar 

  24. Linehan, J.H., C.A. Dawson, D.A. Rickaby, T.A. Bronikowski, C.N. Gillis, and B.R. Pitt. Pulmonary endothelial angiotensin-converting enzyme kinetics. Yudelevich, D.L.; Mann, G.E. eds.Carrier-mediated transport of solutes from blood to tissue, London: Longman, 1985, 251–264.

    Google Scholar 

  25. Maseri, A., P. Caldini, P. Haward, R.C. Joshi, S. Permutt, and K.L. Zierler. Determinants of pulmonary vascular volume: recruitment versus distensibility.Circ. Res. 31:218–228, 1972.

    CAS  PubMed  Google Scholar 

  26. Mazzone, R.W. Influence of vascular and transpulmonary pressures on the functional morphology of the pulmonary microcirculation.Microvasc. Res. 20:295–306, 1980.

    Article  CAS  PubMed  Google Scholar 

  27. Moalli, R., B.R. Pitt, and C.N. Gillis. Effect of flow and surface area on angiotensin-converting enzyme activity in isolated rabbit lung.J. Appl. Physiol. (in press).

  28. Oparil, S., S. Winternitz, V. Gould, M. Baerwaldt, and P. Szidon. Effect of hypoxia on the conversion of angiotensin I to II in the isolated perfused rat lung.Biochem. Pharmacol. 31:1375–1379, 1982.

    Article  CAS  PubMed  Google Scholar 

  29. Pitt, B.R. and G. Lister. Kinetics of pulmonary angiotensin converting enzyme activity in conscious developing lambs.J. Appl. Physiol. 57:1158–1166, 1984.

    CAS  PubMed  Google Scholar 

  30. Pitt, B.R., G. Lister, C.A. Dawson, and J.H. Linehan. Effect of hypoxia and hypercapnia on angiotensin-converting enzyme activity in the cerebral microcirculation of anesthetized dogs.Am. J. Physiol. 250: (Heart Circ. Physiol.):H806-H14, 1986.

    CAS  PubMed  Google Scholar 

  31. Pitt, B.R., G. Lister, P. Davies, and L.M. Reid. Relation of pulmonary ACE activity to endothelial surface area in developing lambs.J. Appl. Physiol. (in press).

  32. Rickaby, D.A., J.H. Linehan, T.A. Bronikowski, and C.A. Dawson. Kinetics of serotonin uptake in the dog lung.J. Appl. Physiol. 51:405–414, 1981.

    CAS  PubMed  Google Scholar 

  33. Rickaby, D.A., C.A. Dawson, and J.H. Linehan. Influence of blood flow and plasma flow rate on kinetics of serotonin uptake by lung.J. Appl. Physiol. 53:677–684, 1982.

    CAS  PubMed  Google Scholar 

  34. Szidon, P., N. Bairey, and S. Oparil. Effect of acute hypoxia on the pulmonary conversion of angiotensin I to angiotensin II in dogs.Circ. Res. 46:221–226, 1980.

    CAS  PubMed  Google Scholar 

  35. Toivonen, H., J. Hartiala, and Y.S. Bakhle. Effects of high oxygen tension on the metabolism of vasoactive hormones in isolated perfused rat lungs.Acta Physiol. Scand. 111:185–192, 1981.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitt, B.R., Lister, G., Davies, P. et al. Effects of changes in pulmonary perfusion and surface area on endothelial ace activity. Ann Biomed Eng 15, 229–238 (1987). https://doi.org/10.1007/BF02364057

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02364057

Keywords

Navigation