Skip to main content
Log in

The mechanical and stress adaptive properties of bone

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The properties of bone tissue as a material and bones as the structural elements of the skeleton are reviewed and summarized. The first half of this work describes bone tissue microstructure, the stress-strain relations, and the strength and fracture of bone. The second and slightly larger half concerns the adaptation of living bone tissue to its load environment. Some observations and experiments of bone remodeling due to applied stress are described and continuum models for this process are formulated. An example of bone remodeling leading to shape changes in the bone is described as well as an example of bone remodeling leading to changes in the bulk density of the bone tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Behiri, J.C. and W. Bonfield. Crack velocity dependence of longitudinal fracture in bone.J. Mater. Sci. 15:1841–1849, 1980.

    Article  Google Scholar 

  2. Blacker, G. and J. Charnley. Changes in the upper femur after low friction arthroplasty.Clin. Orthop. 137;15–24, 1978.

    PubMed  Google Scholar 

  3. Bonfield, W., M.D. Grynpas, and R.J. Young. Crack velocity and the fracture of bone.J. Biomech. 11:473–479, 1978.

    Article  CAS  PubMed  Google Scholar 

  4. Bundy, K.J. Experimental studies of the nonuniformity and anisotropy of human compact bone. Ph.D. dissertation. Stanford Univeristy, 1974.

  5. Burstein, A.H., D.T. Reilly, and V.H. Frankel. Failure Characteristics of bone and bone tissue. InPerspectives in Biomedical Engineering, edited by R.M. Kenedi. Baltimore, Md.: University Park Press, 1973, pp. 1–4.

    Google Scholar 

  6. Carter, D.R. and W.C. Hayes. The compressive behavior of bone as a two phase porous structure.J. Bone Joint Surg. 59A:954–962, 1977.

    Google Scholar 

  7. Charnay, A. and J. Tchantz. Mechanical influences in bone remodeling experimental research on Wolff's Law.J. Biomech. 5:173–180, 1972.

    Google Scholar 

  8. Charnley, J. Fracture of femoral prostheses in total hip replacement, a clinical study.Clin. Orthop. 111:105–120, 1975.

    PubMed  Google Scholar 

  9. Cowin, S.C. On the strength anisotropy of bone and wood.J. Appl. Mech. 46:832–838, 1979.

    Google Scholar 

  10. Cowin, S.C. and K. Firoozbakhsh. Bone remodeling of diaphyseal surfaces under constant load: Theoretical predictions.J. Biomech. 14:471–484, 1981.

    Article  CAS  PubMed  Google Scholar 

  11. Cowin, S.C. and D.H. Hegedus. Bone remodeling I: Theory of adaptive elasticity.J. Biomech. 6:313–326, 1976.

    Google Scholar 

  12. Cowin, S.C. and R.R. Nachlinger. Bone remodeling III: Uniqueness and stability in adaptive elasticity theory.J. Elast. 8:285–295, 1978.

    Article  Google Scholar 

  13. Cowin, S.C. and W.C. Van Buskirk. Internal bone remodeling induced by a medullary pin.J. Biomech. 11:269–275, 1978.

    Article  CAS  PubMed  Google Scholar 

  14. Cowin, S.C. and W.C. Van Buskirk. Surface bone remodeling induced by a medullary pin.J. Biomech. 12:269–276, 1979.

    Article  CAS  PubMed  Google Scholar 

  15. Crowninshield, R.D. and M.H. Pope. The response of compact bone in tension at various strain rates.Ann. Biomed. Eng. 2:217–225, 1974.

    Article  Google Scholar 

  16. Currey, J.D. Differences in the blood supply of bone of different histological types.Q. J. Microsc. Sci. 101:351–370, 1960.

    Google Scholar 

  17. Currey, J.D. Changes in the impact energy absorption of bone with age.J. Biomech. 12:459–470, 1979.

    CAS  PubMed  Google Scholar 

  18. Firoozbakhsh, K. and S.C. Cowin. Devolution of inhomogeneities in bone structure—predictions of adaptive elasticity theory.J. Biomech. Eng. 102:287–293, 1980.

    CAS  PubMed  Google Scholar 

  19. Frost, H.M.The Laws of Bone Structure. Springfield, Ill.: Charles C. Thomas, 1964, pp. 13–41.

    Google Scholar 

  20. Frost, H.M. Tetracycline-based histological analysis of bone remodeling.Calcif. Tissue Res. 3:211–237, 1969.

    Article  CAS  PubMed  Google Scholar 

  21. Gjelsvick, A. Bone remodeling and piezoelectricity—I.J. Biomech. 6:69–77, 1973.

    Google Scholar 

  22. Gjelsvick, A. Bone remodeling and piezoelectricity—II.J. Biomech. 6:187–193, 1973.

    Google Scholar 

  23. Glimcher, M.J. Composition, structure and organization of bone and other mineralized tissues and the mechanism of calcificationHandbook of Physiology, Endocrinology VII. New York: American Physiological Society, 1979, pp. 25–108.

    Google Scholar 

  24. Goodman, M.A. and S.C. Cowin. A continuum theory for granular materials.Arch. Ration. Mech. Anal. 44:321–339, 1972.

    Article  Google Scholar 

  25. Guzelsu, N. and H. Demiray. Electromechanical properties and related models of bone tissues.Int. J. Eng. Sci. 17:813–851, 1979.

    Article  Google Scholar 

  26. Hashin, Z. and B.W. Rosen. The elastic moduli of fiber-reinforced materials.J. Appl. Mech. 31:223–232, 1964.

    Google Scholar 

  27. Hashin, Z. Failure criteria for unidirectional fiber composites.J. Appl. Mech. 47:329–334, 1980.

    Google Scholar 

  28. Hegedus, D.H. and S.C. Cowin. Bone remodeling II: Small strain adaptive elasticity.J. Elast. 6:337–352, 1976.

    Google Scholar 

  29. Jaworski, Z.F.G., M. Liskova-Kiar, and H.K. Uhthoff. Effect of long term immobilization on the pattern of bone loss in older dogs.J. Bone Joint Surg. 62B:104–110, 1980.

    Google Scholar 

  30. Katz, J.L. Hard tissue as a composite material I. Bounds on the elastic behavior.J. Biomech. 4:455–473, 1971.

    CAS  PubMed  Google Scholar 

  31. Katz, J.L. Hierarchical modeling of compact haversian bone as a fiber reinforced material.1976 Advances in Bioengineering. New York: American Society of Mechanical Engineers, 1976, pp. 17–18.

    Google Scholar 

  32. Katz, J.L. Anisotropy of Young's modulus in bone.Nature 283:106–107, 1980.

    CAS  PubMed  Google Scholar 

  33. Kazarian, L.E. and H. Von Gierke. Bone loss as a result of immobilization and chelation.Clin. Orthop. 65:67–75, 1969.

    CAS  PubMed  Google Scholar 

  34. Knets, I.V. and A. Malmeisters. The deformability and strength of human compact bone tissue. In Mechanics of Biological Solids, Proceedings of the Euromech Colloquium 68. Varna, Bulgaria, 1975, 1977, pp. 123–141.

  35. Lakes, R.S., J.L. Katz, and S.S. Sternstein. Viscoelastic properties of wet cortical bone—I. Torsional an biaxial studies.J. Biomech. 12:657–678, 1979.

    CAS  PubMed  Google Scholar 

  36. Lang, S.B. Ultrasonic method for measuring elastic coefficients of bone and results on fresh and dried bovine bones.IEEE Trans. Biomed. Eng. 17:101–105, 1970.

    CAS  PubMed  Google Scholar 

  37. Liskova, M. and J. Hert. Reaction of bone to mechanical stimuli: Part 2. Periosteal and endosteal reaction of tibial diaphysis in rabbit to intermittent loading (sic).Folia Morphol. 19:301–317, 1971.

    CAS  Google Scholar 

  38. Martin, R.B. The effects of geometric feedback in the development of osteoporosis.J. Biomech. 5:447–455, 1972.

    Article  CAS  PubMed  Google Scholar 

  39. Meade, J.B., S.C. Cowin, J.J. Klawitter, W.C. Van Buskirk, H.B. Skinner, and A.M. Weinstein. Short term remodeling due to hyperphysiological stress.J. Bone Joint Surg. Abstract. In press.

  40. Piekarski, K. Fracture of bone.J. Appl. Phys. 41:215–223, 1970.

    Article  Google Scholar 

  41. Piekarski, K. Analysis of bone as a composite material.Int. J. Eng. Sci. 11:557–565, 1973.

    Article  CAS  Google Scholar 

  42. Pope, M.H. and J.O. Outwater. Mechanical properties of bone as a function of position and orientation.J. Biomech. 7:61–66, 1974.

    Article  CAS  PubMed  Google Scholar 

  43. Reilly, D.T. and A.H. Burstein. The elastic and ultimate properties of compact bone tissue.J. Biomech. 8:393–405, 1975.

    Article  CAS  PubMed  Google Scholar 

  44. Rosen, B.W. Mechanics of composite strengthening. InFiber Composite Materials. Metals Park, Ohio: American Society for Metals, 1965, pp. 37–75.

    Google Scholar 

  45. Sedlin, E.D. and C. Hirsch. Factors affecting the determination of the physical properties of femoral cortical bone.Acta Orthop. Scand. 37:29–48, 1966.

    CAS  PubMed  Google Scholar 

  46. Shumskii, V.V., A.A. Merten, and V.V. Dzenis. Effect of the type of physical stress on the state of the tibial bones of highly trained athletes as measured by ultrasound techniques.Mekh. Polim. 5:884–888, 1978.

    Google Scholar 

  47. Tsai, S.W. and E.M. Wu. A general theory of strength for anisotropic materials.J. Compos. Mater. 5:58–80, 1971.

    Google Scholar 

  48. Uhthoff, H.K. and Z.F.G. Jaworski. Bone loss in response to long term immobilization.J. Bone Joint Surg. 60B:420–429, 1978.

    Google Scholar 

  49. Van Buskirk, W.C., S.C. Cowin, and R.N. Ward. Ultrasonic measurement of orthotropic elastic constants of bovine femoral bone.J. Biomech. Eng. 103:67–71, 1981.

    PubMed  Google Scholar 

  50. Williams, J.L. and J.L. Lewis. Properties of an anisotropic model of cancellous bone from the proximal tibial epiphysis.J. Biomech. Eng. 104:50–56, 1982.

    CAS  PubMed  Google Scholar 

  51. Woo, S.L.Y., S.C. Kuei, W.A. Dillon, D. Amiet, F.C. White, and W.H. Akeson. The effect of prolonged physical training on the properties of long bone—a study of Wolff's law.J. Bone Joint Surg. 63A:780–787, 1981.

    Google Scholar 

  52. Wright, T.M. and W.C. Hayes. Tensile testing of bone over a wide range of strain rates; effects of strain rate, microstructure and density.Med. Biol. Eng. 14:671–679, 1976.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowin, S.C. The mechanical and stress adaptive properties of bone. Ann Biomed Eng 11, 263–295 (1983). https://doi.org/10.1007/BF02363288

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02363288

Keywords

Navigation