Skip to main content
Log in

The quantum stochastic equation is unitarily equivalent to a symmetric boundary value problem for the Schrödinger equation

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We prove that the solution of the Hudson-Parthasarathy quantum stochastic differential equation in the Fock space coincides with the solution of a symmetric boundary value problem for the Schrödinger equation in the interaction representation generated by the energy operator of the environment. The boundary conditions describe the jumps in the phase and the amplitude of the Fourier transforms of the Fock vector components as any of its arguments changes the sign. The corresponding Markov evolution equation (the Lindblad equation or the “master equation”) is derived from the boundary value problem for the Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Lindblad, “On the generators of quantum dynamical semigroups,”Comm. Math. Phys.,48, No. 2, 119–130 (1976).

    MATH  MathSciNet  Google Scholar 

  2. R. L. Hudson and K. R. Parthasarathy, “Quantum Ito's formula and stochastic evolutions,”Comm. Math. Phys.,93, No. 3, 301–323 (1984).

    MathSciNet  Google Scholar 

  3. K. R. Parthasarathy,An Introduction to Quantum Stochastic Calculus, Birkhauser, Basel (1992).

    Google Scholar 

  4. P. A. Meyer,Quantum Probability for Probabilists, Vol. 1338, Lecture Notes in Math., Springer-Verlag, Berlin (1993).

    Google Scholar 

  5. E. B. Davies,Quantum Theory of Open Systems, Acad. Press, London (1976).

    Google Scholar 

  6. V. Gorini, A. Kossakovsky, and E. C. G. Sudarshan, “Completely positive dynamical semigroups ofn-level systems,”J Math. Phys.,17, No. 3, 821–825 (1976).

    Google Scholar 

  7. C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: quantum statistical differential equations and the master equation,”Phys. Rev. A,31, 3761–3774 (1985).

    Article  MathSciNet  Google Scholar 

  8. Quantum Stochastic Processes and Open Systems (A. N. Kolmogorov and S. P. Novikov, editors) [in Russian], Vol. 42, Ser,Mathematics, Mir, Moscow (1988).

    Google Scholar 

  9. R. Z. Khas'minskii, “Ergodic properties of recurrent diffusions and stabilization of the Cauchy problem for a parabolic equation,”Teor. Veroyatnost i Primenen. [Theory Probab. Appl.],5, No. 1, 196–214 (1960).

    MATH  Google Scholar 

  10. K. Ichihara,Explosion Problems for Symmetric Diffusion Processes, Vol 1203, Lecture Notes in Math., Springer-Verlag, Berlin (1986), pp. 75–89.

    Google Scholar 

  11. A. M. Chebotarev, “Necessary and sufficient conditions for conservativeness of dynamical semigroup,” in: Journal of Soviet Mathematics, Vol. 56, No. 5 (1991), pp. 2697–2719.

    MATH  MathSciNet  Google Scholar 

  12. A. M. Chebotarev, “Sufficient conditions of the conservatism of a minimal dynamical semigroup,”Mat. Zametki [Math. Notes], Vol. 52, No. 4, 112–122 (1992).

    MATH  MathSciNet  Google Scholar 

  13. A. M. Chebotarev, F. Fagnola and A. Frigerio, “Towards a stochastic Stone's theorem,” in:Stochastic Partial Differential Equations and Applications, Vol. 268, Pitman Res. Notes Math. Ser, Longman Sci. Tech., Harlow (1992) pp. 86–97.

    Google Scholar 

  14. A. M. Chebotarev and F. Fagnola, “Sufficient conditions for conservativity of quantum dynamical semigroups,”J. Funct. Anal.,113, No. 1, 131–153 (1993).

    MathSciNet  Google Scholar 

  15. A. S. Holevo, “On conservativity of covariant dynamical semigroups,”Rep. Math. Phys.,33, 95–100 (1993).

    MATH  MathSciNet  Google Scholar 

  16. B. V. Bhat R. and K. R. Parthasarathy, “Markov dilations of non-conservative dynamical semigroups and a quantum boundary theory,”Ann. Inst. H. Poincaré. Probab. Statist.,31, No. 4, 601–651 (1995).

    Google Scholar 

  17. A. S. Holevo, “On the structure of covariant dynamical semigroups,”J. Funct. Anal.,131, 255–278 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  18. A. M. Chebotarev, J. K. Garcia and R. B. Quezada, “On the Lindblad equation with unbounded time-dependent coefficients,”Mat. Zametki [Math. Notes],61, No. 1, 125–140 (1997).

    MathSciNet  Google Scholar 

  19. A. M. Chebotarev, “Minimal solutions in classical and quantum probability,” in:Quantum Probability and Related Topics, VII (L. Accardi, editor), World Scientific, Singapore (1992), pp. 79–91.

    Google Scholar 

  20. F. Fagnola, “Characterization of isometric and unitary weakly differentiable cocycles in Fock space,” in:Quantum Probability and Related Topics, VIII, Preprint No. 358, UTM, Trento (1993), pp. 143–164.

    Google Scholar 

  21. B. V. Bhat R., F. Fagnola and K.B. Sinha, “On quantum extensions of semigroups of Brownian motions on a half-line,”Russian J. Math. Phys.,4, No. 1, 13–28 (1996).

    MathSciNet  Google Scholar 

  22. J. L. Journé, “Structure des cocycles markoviens sur l'espace de Fock,”Probab. Theory Related Fields,75, 291–316 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  23. A. M. Chebotarev, “Symmetric form of the Hudson-Parthasarathy stochastic equation,”Mat. Zametki [Math. Notes],60, No. 5, 726–750 (1996).

    MATH  MathSciNet  Google Scholar 

  24. V. D. Koshmanenko, “Perturbation of self-adjoint operators by singular bilinear forms,”Ukrain. Mat. Zh. [Ukrainian Math. J.],41, No. 1, 3–18 (1989).

    MATH  MathSciNet  Google Scholar 

  25. V. D. Koshmanenko,Singular Bilinear Forms in Perturbation Theory of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1993).

    Google Scholar 

  26. S. Albeverio, W. Karwowski and V. Koshmanenko, “Square powers of singularly perturbed operators,”Math. Nachr.,173, 5–24 (1995).

    MathSciNet  Google Scholar 

  27. T. Kato, Perturbation Theory for Linear Operators, Springer, Heidelberg (1976).

    Google Scholar 

  28. F. A. Berezin,The Method of Second Quantization [in Russian], Nauka, Moscow (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromMatematicheskie Zametki, Vol. 61, No. 4, pp. 612–622, April, 1997.

Translated by A. M. Chebotarev

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chebotarev, A.M. The quantum stochastic equation is unitarily equivalent to a symmetric boundary value problem for the Schrödinger equation. Math Notes 61, 510–518 (1997). https://doi.org/10.1007/BF02354995

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02354995

Key words

Navigation