Skip to main content
Log in

NMR studies of electronic structure and hydrogen diffusion in transition metal hydrides

  • Hydrogen in Metals
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Nuclear magnetic resonance spectroscopy has had extensive applications for the characterization of numerous metal-hydrogen systems. Although the greatest emphasis of proton NMR has been to evaluate diffusion behavior, increasing attention has been addressed upon the correlation of proton Knight shifts and the conduction electron contributions to proton spin-lattice relaxation times to the electronic structure properties of the hydride. The general principles of NMR, that pertain to the usual situations for most transition metal hydrides, will be briefly reviewed. Several specific examples from some recent research will be discussed in greater detail. In particular, the roles of host crystal structure and hydrogen site occupancy to hydrogen diffusion behavior are examined for the Ti1-y Cu y H x and Zr1-y Pd y H x systems. The proton hyperfine parameters in TiH x and ZrH x , as well as several related ternary hydrides, are used to qualitatively assess the character of the Fermi level electronic states. The relationship between the tetragonal distortions of the Ti and Zr dihydrides and a solid-state Jahn-Teller mechanism will also be examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Abragam.The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961).

    Google Scholar 

  2. C.P. Slichter,Principles of Magnetic Resonance, 2nd Edition (Springer-Verlag, Berlin, 1978).

    Google Scholar 

  3. T.C. Farrar and E.D. Becker,Pulse and Fourier Transform NMR-Introduction to Theory and Methods (Academic, New York, 1971).

    Google Scholar 

  4. U. Haeberlin,High Resolution NMR in Solids-Selective Averaging (Academic, New York, 1976).

    Google Scholar 

  5. M. Mehring,High Resolution NMR Spectroscopy in Solids (Springer-Verlag, Berlin, 1976).

    Google Scholar 

  6. Reference [2].Chapter 2..

    Google Scholar 

  7. M. Goldman,Spin Temperature and Nuclear Magnetic Resonance in Solids (Clarendon, Oxford, 1970).

    Google Scholar 

  8. J. Winter,Magnetic Resonance in Metals (Clarendon, Oxford, 1971).

    Google Scholar 

  9. G.C. Carter, L.H. Bennett and D.J. Kahan,Metallic Shifts in NMR (Pergamon, Oxford, 1977).

    Google Scholar 

  10. R.M. Cotts, Ber. Bunsen. Phys. Chem. 76(1972)760; R.M. Cotts, in:Hydrogen in Metals II: Basic Properties. ed. G. Alefeld and J. Völkl (Springer-Verlag, Berlin, 1978) p. 227.

    Google Scholar 

  11. R.G. Barnes, inNuclear and Electron Resonance Spectroscopies Applied to Materials Science (North-Holland, New York, 1981) p. 19.

    Google Scholar 

  12. R.C. Bowman, Jr., in.Metal Hydrides, ed. G. Bambakidis (Plenum, New York, 1981) p. 109.

    Google Scholar 

  13. E.F.W. Seymour, J. Less Common Met. 88(1982)323.

    Article  Google Scholar 

  14. W.D. Knight, Phys. Rev. 76(1949)1259.

    ADS  Google Scholar 

  15. L.E. Drain, Proc. Phys. Soc. 80(1962)1380.

    Article  Google Scholar 

  16. J. Grunzweig-Genossar, M. Kuznietz and B. Meerovici, Phys. Rev. B1(1970)1958.

    ADS  Google Scholar 

  17. D.S. Schreiber and L.D. Graham, J. Chem. Phys. 43(1965)2573.

    Article  Google Scholar 

  18. D. Zamir and R.M. Cotts, Phys. Rev. A134(1964)666. D. Zamir and R.M. Cotts, Proc. XIII Colloque Ampere (North-Holland, Amsterdam, 1964) p. 276.

    ADS  Google Scholar 

  19. M. Belhoul, G.A. Styles, E.F.W. Seymour, T.-T. Phua, R.G. Barnes, O.R. Torgeson and D.T. Peterson, J. Phys. F12(1982)2455.

    ADS  Google Scholar 

  20. N. Bloembergen, E.M. Purcell and R.V. Pound, Phys. Rev. 73(1948)679.

    Article  ADS  Google Scholar 

  21. C.A. Sholl, J. Phys. C14(1981)447.

    ADS  Google Scholar 

  22. P.A. Fedders, Phys. Rev. B18(1978)1055.

    ADS  Google Scholar 

  23. Y. Fukai and S. Kazama, Acta Met. 25(1977)59.

    Article  Google Scholar 

  24. R.F. Karlicek, Jr. and I.J. Lowe, J. Less Common Met. 73(1980)219.

    Article  Google Scholar 

  25. R.C. Bowman, Jr., B.D. Craft, A. Attalla, M.H. Mendolsohn and D.M. Gruen, J. Less. Common Met. 73(1980)227.

    Google Scholar 

  26. R.C. Bowman, Jr. and A.J. Maeland, Phys. Rev. B24(1981)2328.

    ADS  Google Scholar 

  27. C. Korn and D. Zamir, J. Phys. Chem. Sol. 31(1970)489.

    Article  Google Scholar 

  28. Refence [9],sect. 5.5..

    Google Scholar 

  29. L.H. Bennett, R.E. Watson and G.C. Carter, in:Electron Density of States, ed. L.H. Bennett (NBS Special Publ. 323, Washington D.C., 1971) p. 601.

  30. J. Korringa, Physica 16(1950)601.

    Article  MATH  Google Scholar 

  31. C. Korn, Phys. Rev. B17(1978)1707.

    Article  ADS  Google Scholar 

  32. M. Peretz, D. Zamir and Z. Hadari, Phys. Rev. B18(1978)2059.

    Article  ADS  Google Scholar 

  33. B. Nowak, O.J. Zogal and M. Minier, J. Phys. C12(1979)4591.

    Article  ADS  Google Scholar 

  34. R.C. Bowman, Jr. and W.-K. Rhim, Phys. Rev. B24(1981)2232.

    ADS  Google Scholar 

  35. R. Göring, R. Lukas and K. Bohmhammel, J. Phys. C14(1981)5675.

    ADS  Google Scholar 

  36. A.C. Switendick, Z. Phys. Chem. N.F. 117(1979)89.

    Google Scholar 

  37. P. Brill and J. Voitländer, Ber. Bunsen. Phys. Chem. 77(1973)1097.

    Google Scholar 

  38. S. Kazama and Y. Fukai, J. Less Common Met. 53(1977)25.

    Article  Google Scholar 

  39. R.E. Taylor, T. Taki and B.C. Gerstein, Phys. Rev. B23(1981)5729.

    ADS  Google Scholar 

  40. B.W. Veal, D.J. Lam and D.G. Westlake, Phys. Rev. B19(1979)2856.

    Article  ADS  Google Scholar 

  41. J.H. Weaver, D.J. Peterman, D.T. Peterson and A. Franciosi, Phys. Rev. B23(1981) 1692.

    ADS  Google Scholar 

  42. K. Tanada, N. Hamaska, M. Yasuda and Y. Fukai, Sol. State Commun. 30(1979)173.

    Google Scholar 

  43. V.V. Nemoshkalenko, M.M. Kindrat, V.P. Krivitskii, B.P. Mamko and A.I. Kharlamov, Inorg. Mater. (USSR) 17(1981)699.

    Google Scholar 

  44. M. Gupta and A.J. Freeman, Phys. Rev. B17(1978)3029.

    Article  ADS  Google Scholar 

  45. A. Fujimori and N. Tsuda, Sol. State Commun. 41(1982)491.

    Article  Google Scholar 

  46. J. Mason, J. Chem. Soc. Dalton (1975)1422.

  47. A.T. Nicol and R.W. Vaughan, J. Chem. Phys. 69(1978)5211.

    Article  ADS  Google Scholar 

  48. B. Stalinski, C.K. Coogan and H.S. Gutowsky, J. Chem. Phys. 34(1961)1191.

    Article  Google Scholar 

  49. K.F. Lau, R.W. Vaughan and C.B. Satterthwaite, Phys. Rev. B15(1977)2449.

    Article  ADS  Google Scholar 

  50. D.P. Burum, D.D. Elleman and W.-K. Rhim, J. Chem. Phys. 68(1978)1164.

    Article  ADS  Google Scholar 

  51. C.L. Bisson and W.D. Wilson, inEffects of Hydrogen Behavior in Materials, ed. A.W. Thompson and I.M. Berstein, (AIME, New York, 1976) p. 416.

    Google Scholar 

  52. C.F. Melius and T.H. Upton, Bull. Amer. Phys. Soc. 23(1978)234.

    Google Scholar 

  53. L.D. Bustard, R.M. Cotts and E.F.W. Seymour, Phys. Rev. B22(1980)12.

    ADS  Google Scholar 

  54. C. Korn and S.D. Goren, Phys. Rev. B 22(1980)2727.

    Article  Google Scholar 

  55. R.C. Bowman, Jr., A.J. Maeland and W.-K. Rhim, Phys. Rev. B26(1982)6362.

    ADS  Google Scholar 

  56. R.C. Bowman, Jr., A. Attalla, A.J. Maeland and W.L. Johnson, Sol. State. Commun. 47(1983)779.

    Article  Google Scholar 

  57. R.C. Bowman, Jr. and B.D. Craft, J. Phys. C17(1984)L477.

    ADS  Google Scholar 

  58. R.R. Arons, H.G. Bohn and H. Lütgemier, Sol. State Commun. 14(1974)1203.

    Article  Google Scholar 

  59. A.J. Maeland, R.C. Bowman, Jr., M.P. Guse and J.J. Rush, Bull. Amer. Phys. Soc. 28(1983)450.

    Google Scholar 

  60. R.C. Bowman, Jr., J.F. Lynch and J.R. Johnson, Mat. Lett. 1(1982)122.

    Article  Google Scholar 

  61. R.C. Bowman, Jr., E.L. Venturini, B.D. Craft, A. Attalla and D.B. Sullenger, Phys. Rev. B27(1983)1474.

    Article  ADS  Google Scholar 

  62. R.C. Bowman, Jr., E.L. Johnson, A.J. Maeland and W.-K. Rhim, Phys. Lett. 94A(1983)181.

    ADS  Google Scholar 

  63. C. Korn, Phys. Rev. B28(1983)95.

    Article  ADS  Google Scholar 

  64. B. Nowak and M. Minier, J. Phys. C15(1982)4385; B. Nowak, O.J. Zogal and H. Drulis, J. Phys. C15(1982)5829.

    ADS  Google Scholar 

  65. M. Gupta, Sol. State Commun. 29(1979)47.

    Google Scholar 

  66. M. Gupta and J.P. Burger, Phys. Rev. B24(1981)7099.

    ADS  Google Scholar 

  67. G.K. Schoep, N.J. Poulis and R.R. Arons, Physica 75(1974)297.

    Article  Google Scholar 

  68. S.R. Kreitzman and R.L. Armstrong, Phys. Rev. B25(1982)2050.

    ADS  Google Scholar 

  69. D.A. Papaconstanopoulos, B.M. Klein, E.N. Economu and L.L. Boyer, Phys. Rev. B 17(1978)141; D.A. Papaconstanopoulos, B.M. Klein, J.S. Faulkner and L.L. Boyer, Phys. Rev. B18(1978)2784.

    ADS  Google Scholar 

  70. A.C. Switendick, J. Less Common Met. 49(1976)283.

    Article  Google Scholar 

  71. A.C. Switendick, J. Less Common Met. 101(1984)191.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mound is operated by the Monsanto Research Corporation for the U.S. Department of Energy under Contract No. DE-AC04-76-DP00053.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowman, R.C. NMR studies of electronic structure and hydrogen diffusion in transition metal hydrides. Hyperfine Interact 25, 583–606 (1985). https://doi.org/10.1007/BF02354668

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02354668

Keywords

Navigation