Skip to main content
Log in

A comparison of six deconvolution techniques

  • Pharmacometrics
  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

We present results for the comparison of six deconvolution techniques. The methods we consider are based on Fourier transforms, system identification, constrained optimization, the use of cubic spline basis functions, maximum entropy, and a genetic algorithm. We compare the performance of these techniques by applying them to simulated noisy data, in order to extract an input function when the unit impulse response is known. The simulated data are generated by convolving the known impulse response with each of five different input functions, and then adding noise of constant coefficient of variation. Each algorithm was tested on 500 data sets, and we define error measures in order to compare the performance of the different methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Simpson. Maximum entropy image processing in 2- and 3-dimensional single photon nuclear medicine imaging. Ph.D. Thesis, Dept. of Physics, University of Southampton, 1994.

  2. D. P. Vaughan and M. Dennis. Mathematical basis of the point area deconvolution method for determiningin vivo input functions.J. Pharm. Sci. 67:663–665 (1978).

    Article  CAS  PubMed  Google Scholar 

  3. D. J. Cutler. Numerical deconvolution by least squares: use of prescribed input functions.J. Pharmacokin. Biopharm. 6:227–241 (1978).

    Article  CAS  Google Scholar 

  4. D. J. Cutler. Numerical deconvolution by least squares: use of polynomials to represent the input function.J. Pharmacokin. Biopharm. 6:243–263 (1978).

    Article  CAS  Google Scholar 

  5. P. Veng Pedersen. Model independent method of analysing input in linear pharmacokinetic systems having polyexponential impulse response. 1: Theoretical analysis.J. Pharm. Sci. 69:298–304 (1980).

    Article  CAS  Google Scholar 

  6. P. Veng Pedersen. Model independent method of analysing input in linear pharmacokinetic systems having polyexponential impulse response. 2: Numerical evaluation.J. Pharm. Sci. 69:305–312 (1980).

    Article  CAS  Google Scholar 

  7. P. Veng Pedersen. Novel deconvolution method for linear pharmacokinetic systems with polyexponential impulse response.J. Pharm. Sci. 69:312–318 (1980).

    Article  CAS  Google Scholar 

  8. P. Veng Pedersen. Novel approach to bioavailability testing: statistical method for comparing drug input calculated by a least squares deconvolution technique.J. Pharm. Sci. 69: 318–324 (1980).

    Article  CAS  Google Scholar 

  9. SIPHAR. Simed SA, Creteil, France.

  10. PCDCON University of Texas, Austin, Texas.

  11. S. Vajda, K. R. Godfrey, and P. Valko. Numerical deconvolution using system identification methods.J. Pharmacokin. Biopharm. 16:85–107 (1988).

    Article  CAS  Google Scholar 

  12. D. Verotta. Two constrained deconvolution methods using spline functions.J. Pharmacokin. Biopharm. 21:609–636 (1993).

    Article  CAS  Google Scholar 

  13. M. K. Charter and S. F. Gull. Maximum entropy and its application to the calculation of drug absorption rates.J. Pharmacokin. Biopharm. 15:645–655 (1987).

    Article  CAS  Google Scholar 

  14. R. Hovorka, M. J. Chappell, K. R. Godfrey, F. N. Madden, M. K. Rouse, and P. A. Soons. CODE: a deconvolution program implementing a regularisation method of deconvolution constrained to non negative values. Description and evaluation. City University, London, Centre for Measurement and Information in Medicine. Report MMG/1995/RH/1 (1995).

  15. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.Numerical Recipes in C, Cambridge University Press (1988).

  16. J. Skilling and R. K. Bryan. Maximum entropy image reconstruction: general algorithm.Monthly Notices Roy. Astronom. Soc. 211:111–124 (1984).

    Article  Google Scholar 

  17. MATLAB. The Math Works Inc, South Natick, MA.

  18. SPLUS. StatSci Division, MathSoft Inc., Seattle, WA.

  19. D. B. Fogel. A comparison of evolutionary programming and genetic algorithms on selected constrained optimisation problems.Simulation 64:399–406 (1995).

    Article  Google Scholar 

  20. T. Back and H. P. Schwefel. An overview of evolutionary algorithms for parameter optimisation.Evolut. Comput. 1:1–24 (1993).

    Article  Google Scholar 

  21. L. F. Lacey, O. N. Keene, C. Duquesnoy, and A. Bye. Evaluation of different indirect measures of rate of drug absorption in comparative pharmacokinetic studies.J. Pharm. Sci. 83:212–215 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. H. Akaike. A new look at the statistical model identification.IEEE Trans. Autom. Control 19:716–723 (1974).

    Article  Google Scholar 

  23. P. Craven and G. Wahba. Smoothing noisy data with spline functions.Numer. Math 31:377–403 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work described in this paper was carried out as part of Grant GR/J67130 “Identifiability and Indistinguishability of Nonlinear Dynamic Systems” from the U.K. Engineering and Physical Sciences Research Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madden, F.N., Godfrey, K.R., Chappell, M.J. et al. A comparison of six deconvolution techniques. Journal of Pharmacokinetics and Biopharmaceutics 24, 283–299 (1996). https://doi.org/10.1007/BF02353672

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02353672

Key words

Navigation