Skip to main content
Log in

Markov traces and II1 factors in conformal field theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Using the duality equations of Moore and Seiberg we define for every primary field in a Rational Conformal Field Theory a proper Markov trace and hence a knot invariant. Next we define two nested algebras and show, using results of Ocneanu, how the position of the smaller algebra in the larger one reproduces part of the duality data. A new method for constructing Rational Conformal Field Theories is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two dimensional quantum field theory. Nucl. Phys. B241, 333 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  2. Moore, G., Seiberg, N.: Classical and quantum conformal field theory. Commun. Math. Phys.123, 177 (1989)

    Article  MathSciNet  Google Scholar 

  3. Moore, G., Seiberg, N.: Taming the conformal Zoo. Phys. Lett.B 220, 422 (1989)

    ADS  MathSciNet  Google Scholar 

  4. Kauffman, L.H.: On knots. Ann. Math. Stud. vol. 115, Princeton, NJ: Princeton University Press 1987

    Google Scholar 

  5. Li, M., Yu, M.: Braiding Matrices, modular transformations and topological field theories in 2+1 dimensions. Commun. Math. Phys.127, 195 (1990) Li, M.: Duality and modular invariance invariance in rational conformal field theories. Copenhagen preprint NBI-HE-90-12 Degiovanni, P.: Topological field theory and rational conformal field theory, preprint LPTENS 89/25

    Article  MathSciNet  Google Scholar 

  6. Verlinde, E.: Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys.B 300, 360 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  7. Jones, V.F.R.: A polynomial invariant for knots via von Neumann algebras. Bull. Am. Math. Soc.12, 103 (1985)

    MATH  Google Scholar 

  8. Kauffman, L.H.: State models and the Jones polynomial. Topology26, 395 (1987)

    MATH  MathSciNet  Google Scholar 

  9. Ocneanu, A.: Quantized groups, string algebras and Galois theory for algebras. In: operator algebras and applications, Vol. II. LMS vol. 136, 1988

  10. Jones, V.F.R.: Index for subfactors. Invent. Math.72, 1 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Murray, F., von Neumann, J.: On rings of operators. IV. Ann. Math.44, 716 (1943)

    Google Scholar 

  12. Connes, A.: Ann. Math.104, 73 (1976)

    MATH  MathSciNet  Google Scholar 

  13. Goodman, F.M., de la Harpe, P., Jones, V.F.R.: Coxeter graphs and Towers of algebras. Berlin, Heidelberg, New York: Springer 1989

    Google Scholar 

  14. Witten, E.: Gauge theories and integrable lattice models. Nucl. Phys. B322, 629 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  15. Witten, E.: Gauge theories, vertex models and quantum groups. Nucl. Phys. B330, 285 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  16. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys.121, 351 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Reshetikhin, N.: Quantized universal envelopping algebras, the Yang-Baxter equation and invariants of links, LOMI preprints E-17-87

  18. Wadati, M., Deguchi, T., Akutsu, Y.: Exactly solvable models and knot theory. Phys. Rep.180, 247–332 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  19. Pasquier, V., Saleur, H.: Common structures between finite systems and conformal field theories through quantum groups. Nucl. Phys.B 330, 523 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  20. Longo, R.: Index of subfactors and statistics of quantum fields. Commun. Math. Phys.126, 217 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Alvarez-Gaumé, L., Gomez, C., Sierra, G.: Duality and quantum groups. Nucl. Phys.B 330, 347 (1990); Topics in conformal field theory: Contribution to the Knizhnik Memorial Volume. Brink, L., Friedan, D., Polyakov, A.M. (eds.). Singapore: World Scientific

    Article  ADS  Google Scholar 

  22. Cvetković, D.M., Doob, M., Sachs, H.: Spectra of graphs, theory and application. New York: Academic Press 1980

    Google Scholar 

  23. Mathur, S.D., Mukhi, S., Sen, A.: On the classification of rational conformal field theories. Phys. Lett.B 213, 303 (1988)

    ADS  MathSciNet  Google Scholar 

  24. Christe, P., Ravanini, F.: A new tool in the classification of rational conformal field theories. Phys. Lett.B 217, 252 (1989)

    ADS  MathSciNet  Google Scholar 

  25. Dijkgraaf, R., Vafa, C., Verlinde, E., Verlinde, H.: The operator algebra of orbifold models. Commun. Math. Phys.123, 485 (1989)

    Article  MathSciNet  Google Scholar 

  26. Schellekens, A.N., Yankielowicz, S.: Cern preprint TH.5483/89

  27. Naulich, S.G., Riggs, H.A., Schnitzer, H.J.: Group level duality in WZW-models and Chern-Simons theory, Brandeis preprint BRX-TH-293

  28. Marcus, D.A.: Number fields. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  29. Ocneanu, A.: Harmonic analysis on group quotients (preprint)

  30. Serre, J.-P.: Linear representations of finite groups. Grad. Texts Math. vol.42. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  31. Evans, D.E., Gould, J.D.: Dimension groups, Embeddings and Presentations of AF Algebras associated to sovable lattice models. Mod. Phys. Lett. A4, 1883 (1989)

    ADS  MathSciNet  Google Scholar 

  32. Evans, D.E., Gould, J.D.: Embeddings and dimension groups of non-commutative AF algebras associated to models in classical statistical mechanics. Swansea preprint

  33. Dijkgraaf, R., Verlinde, E.: Modular invariance and the fusion algebra. Nucl. Phys. B (Proc. Suppl.)5B, 87 (1988)

    ADS  MathSciNet  Google Scholar 

  34. Jones, V.F.R.: On a certain value of the Kauffman polynomial. Commun. Math. Phys.125, 459 (1989)

    Article  ADS  MATH  Google Scholar 

  35. Dijkgraaf, R., Pasquier, V., Roche, Ph.: Quasi-quantum groups related to orbifold models, PUPT-1169

  36. Drinfel'd, V.G.: Quantum groups. Proc. Int. Congress of Mathematicians, Berkeley, CAL '86

  37. Rehren, K.-H., Schroer, B.: Einstein causality and artin braids. Nucl. Phys. B312, 715 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  38. di Francesco, P., Zuber, J.-B.:SU(N) Integrable lattice models and modular invariance. PUPT-1164

  39. Jones, V.F.R.: Notes on subfactors and statistical mechanics. Int. J. Mod. Phys. A5, 441 (1990)

    ADS  MATH  Google Scholar 

  40. Fredenhagen, K., Rehren, K.-H., Schroer, B.: Superselection sectors with braid group statistics and exchange algebras. I. General theory. Commun. Math. Phys.125, 201 (1989)

    Article  MathSciNet  Google Scholar 

  41. Longo, R.: Index of subfactors and statistics of quantum fields. II. Correspondences, braid group statistics and Jones polynomial. Commun. Math. Phys.130, 285 (1990)

    MATH  MathSciNet  Google Scholar 

  42. Rehren, K.-H.: Quantum symmetry associated with braid group statistics. Utrecht preprint THU-89/36

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Boer, J., Goeree, J. Markov traces and II1 factors in conformal field theory. Commun.Math. Phys. 139, 267–304 (1991). https://doi.org/10.1007/BF02352496

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02352496

Keywords

Navigation