Skip to main content
Log in

Transposable elements behavior following viral genomic stress inDrosophila melanogaster inbred line

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

To analyze the behavior of endogenous transposable elements under genomic stress, aDrosophila melanogaster inbred line was submitted to three kinds of viral perturbations. First, a retroviral plasmid containing the avian Rous Associated Virus type 2 (RAV-2) previously deleted for the viral envelope coding gene (env) was introduced by P element transformation into theDrosophila genome. An insertion of this avian retroviral sequence was detected byin situ hybridization in site 53C on polytene chromosome arm 2R. Second,Drosophila embryos were injected with RAV-2 particles produced by cell culture after transfection with the retroviral plasmid. Third, theDrosophila melanogaster inbred line was stably infected by the sigma native virus. It appears that neither the offspring of the flies in which the viral DNA was found integrated nor those from the infected sigma flies showed copia or mdgl element mobilization. Injection of the avian RAV-2 particles led, however, to the observation of somatic transpositions of mdgl element on the 2L chromosome, the copia element insertion pattern remaining stable. Thus, endogenous transposable elements show more instability in sublines injected with exogenous viral particles than in a transgenic subline containing a foreign viral insert, all transposable elements not being equally sensitive to such genomic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandrov YN, Golubovsky MD (1983) The multisite mutations induced by viruses and foreign DNA can spread in natural populations ofDrosophila. Drosophila Inform Serv 59:10–11

    Google Scholar 

  • Alexandrova MV, Alexandrov ID (1992) Frequency spectra of mobile elements in two wild type inbred stocks ofDrosophila melanogaster with long term laboratory. Drosophila Inform Serv 71:213–214

    Google Scholar 

  • Amault C, Biémont C (1989) Heat shocks do not mobilize mobile elements in genomes ofDrosophila melanogaster inbred lines. J Mol Evol 28:388–390

    Google Scholar 

  • Amault C, Dufournel I (1994) Genome and stresses: reactions against aggressions, behavior of transposable elements. Genetica 93:149–160

    Google Scholar 

  • Barker DD, Wu H, Hartung S, Breindl M, Jaenisch R (1991) Retrovirus-induced insertional mutagenesis: mechanism of collagen mutation in Mov13 mice. Mol Cell Biol 11:5154–5163

    CAS  PubMed  Google Scholar 

  • Baumiller RC (1967) Virus induced point mutation. Nature 214:806–807

    CAS  PubMed  Google Scholar 

  • Biémont C (1994) Dynamic equilibrium between insertion and excision of P elements in highly inbred lines from an M′ strain ofDrosophila melanogaster. J Mol Evol 39:466–472

    Article  PubMed  Google Scholar 

  • Biémont C, Aouar A (1987) Copy-number dependent transpositions and excisions of the mdg-1 mobile element in inbred lines ofDrosophila melanogaster. Heredity 58:39–47

    Google Scholar 

  • Bradshaw VA, McEntee K (1989) DNA damage activates transcription and transposition of yeast Ty retrotransposons. Mol Gen Genet 218:465–474

    Article  CAS  PubMed  Google Scholar 

  • Bridges CB (1935) Salivary chromosome maps. J Hered 26:60–64

    Google Scholar 

  • Bucala R, Lee AT, Rourke L, Cerami A (1993) Transposition of an Alu-containing element induced by DNA-advanced glycosylation endproducts. Proc Natl Acad Sci USA 90:2666–2670

    CAS  PubMed  Google Scholar 

  • Burdette WJ, Yoon IS (1967) Mutations, chromosomal aberrations, and tumors in insects treated with oncogenic virus. Science 155:340–341

    CAS  PubMed  Google Scholar 

  • Chopra VL (1970) DNA feeding and directed mutagenesis inDrosophila melanogaster. Genet Res Camb 15:345–346

    CAS  Google Scholar 

  • Cosset F-L, Legras C, Chebloune Y, Savatier P, Thoraval P, Thomas J-L, Samarut J, Nigon VM, Verdier G (1990) A new avian leukosis virus (ALV) based-packaging cell line that uses two separate trans-complementing helper genomes. J Virol 64:1070–1078

    CAS  PubMed  Google Scholar 

  • Dash S, Peterson PA (1994) Frequent loss of the En transposable element after excision and its relation to chromosome replication in maize (Zea mays). Genetics 136:653–671

    CAS  PubMed  Google Scholar 

  • Dellaporta SL, Chomet PS, Mottinger JP, Wood JA, Yu SM, Hicks JB (1984) Endogenous transposable elements associated with virus infection in maize. Cold Spring Harb Symp 49:321–328

    CAS  Google Scholar 

  • Dunsmuir P, Brorein WJ, Simon MA, Rubin GM (1980) Insertion of theDrosophila transposable element copia generates a 5 base pair duplication. Cell 21:575–579

    Article  CAS  PubMed  Google Scholar 

  • Fox AS, Yoon SB (1968) On the mechanisms of DNA effects in eukaryotes. Proc 12th Int Cong Genet 1:87

    Google Scholar 

  • Gazaryan KG, Shahbazyan AK, Sakhanova NY, Smimova SG (1982) Mutations obtained inDrosophila after microinjections of Rous Sarcoma Viruses into early embryos. Drosophila Inform Serv 58: 54–55

    Google Scholar 

  • Gazaryan KG, Golitsov VA, Nabirochkin SD, Eshkind LG, Tarantul VZ, Lening LV, Popov LS (1985) Introduction of DNA sequences of Rous Sarcoma Virus intoDrosophila and mouse genomes by microinjection into egg cell. Mol Biol Translation of Moleculyarnaya Biologiya 19:632–638

    Google Scholar 

  • Gazaryan KG, Nabirochkin SD, Shibanova EN, Tatosyan AG, Kisselev FL, Ambartsumian NS, Tikhonenko TI, Goltzov VA (1987) Unstable visible mutations induced inDrosophila melanogaster by injections of oncogenic virus DNA into the polar plasm of early embryos. Mol Gen Genet 207:130–141

    Article  CAS  PubMed  Google Scholar 

  • Gazaryan KG, Nabirochkin SD, Tatosyan AG, Shahbazyan AK, Shibanova EN (1984) Genetic effects of injection of Rous Sarcoma Virus DNA into polar plasm of earlyDrosophila melanogaster embryos. Nature 311:392–394

    Article  CAS  PubMed  Google Scholar 

  • Georgiev PG, Korochkina SE, Mogila VA, Gerasimova TI (1987) Mitomycin C induces transpositions of mobile elements inDrosophila melanogaster genome. Drosophila Inform Serv 66:61

    Google Scholar 

  • Georgiev PG, Korochkina SE, Georgieva SG, Gerasimova TI (1990) Mitomycin-C induces genomic rearrangements involving transposable elements in Drosophila melanogaster. Mol Gen Genet 220: 229–233

    Article  CAS  PubMed  Google Scholar 

  • Gershenson SM, Alexandrov YN, Maliuta SS (1971) Production of recessive lethals inDrosophila by viruses non-infectious for the host. Mutat Res 11:163–173

    CAS  PubMed  Google Scholar 

  • Gershenson SM, Alexandrov YN, Maliuta SS (1975) Mutagenic action of DNA and viruses inDrosophila. In: Dumka N (ed). Academy of Sciences of the Ukrainian SSR, Kiev, 160 pp

    Google Scholar 

  • Golubovsky MD, Plus N (1982) Mutability studies in twoDrosophila melanogaster isogenic stocks, endemic for C picornavirus and virus-free. Mutat Res 103:29–32

    Article  CAS  PubMed  Google Scholar 

  • Gray DA, Weiher H, Gridley T, Noda T, Sharpe A, Jaenisch R (1992) Developmental mutations generated by retroviral insertional mutagenesis. In: Gottesman ME, Vogel HJ (eds) Mechanisms of eukaryotic DNA recombination. Academic Press, New York, pp 55–59

    Google Scholar 

  • Ilyin YV, Chmeliauskaite VG, Georgiev GP (1980) Double stranded sequences in RNA ofDrosophila melanogaster: relation to mobile Drosophila Inform Servpersed genes. Nucleic Acid Res 8:3439–3457

    CAS  PubMed  Google Scholar 

  • Itaya M (1993) Integration of repeated sequences (pBR322) in theBacillus subtilis 168 chromosome without affecting the genome structure. Mol Gen Genet 241:287–297

    Article  CAS  PubMed  Google Scholar 

  • Johns MA, Mottinger J, Freeling M (1985) A low copy number, copialike transposon in the maize genome. EMBO J 4:1093–1102

    CAS  PubMed  Google Scholar 

  • Junakovic N, Di Franco C, Barsand P, Palumbo G (1987) Transposition of copia-like nomadic elements can be induced by heat-shock. J Mol Evol 24:89–93

    Google Scholar 

  • Karess RE, Rubin GM (1984) Analysis of P transposable element functions inDrosophila. Cell 38:135–146

    Article  CAS  PubMed  Google Scholar 

  • Kim AI, Belyaeva ES (1991) Transposition of mobile elements gypsy (mdg-4) and hobo in germ line and somatic cells of a genetically unstable mutator strain ofDrosophila melanogaster. Mol Gen Genet 229:437–444

    Article  CAS  PubMed  Google Scholar 

  • Lebel EG, Masson J, Bogucki A, Paszkowski J (1993) Stress-induced intrachromosomal recombination in plant somatic cells. Proc Natl Acad Sci USA 90:422–426

    CAS  PubMed  Google Scholar 

  • Levis R, Dunsmuir P, Rubin GM (1980) Terminal repeats of theDrosophila transposable element copia: nucleotide sequence and genome organization. Cell 211:581–585

    Google Scholar 

  • Mismer D, Rubin GM (1987) Analysis of the promoter of theninaE opsin gene inDrosophila melanogaster. Genetics 116:565–578

    CAS  PubMed  Google Scholar 

  • Moscovici C, Moscovici MG, Jimenez H, Lai MMC, Hayman MJ, Vogt PK (1977) Continuous tissue culture cell lines derived from chemically induced tumors of Japanese quail. Cell 11:95–103

    Article  CAS  PubMed  Google Scholar 

  • Mottinger JP (1992) Studies on the Mx transposable elements system in maize recovered from X-irradiated stocks. Mol Gen Genet 236:96–104

    CAS  PubMed  Google Scholar 

  • Mottinger JP, Dellaporta SL, Keller P (1984a) Stable and unstable mutations at the shrunken locus recovered from aberrant ratio lines in maize. Genetics 106:751–767

    Google Scholar 

  • Mottinger JP, Johns MA, Freeling M (1984b) Mutations of the Adhl gene in maize following infection with barley stripe mosaic virus. Mol Gen Genet 195:367–369

    Article  CAS  Google Scholar 

  • Müllenbach R, Lagoda PJL, Welter C (1989) Au efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet 5:391

    PubMed  Google Scholar 

  • Paquin CE, Williamson VM (1984) Temperature effects on the rate of Ty transposition. Science 226:53–54

    CAS  Google Scholar 

  • Parkash O (1967) Mutagenic effect of irradiated DNA inDrosophila melanogaster. Nature 214:611–612

    CAS  PubMed  Google Scholar 

  • Parsons PA (1973) Genetics of resistance to environmental stresses inDrosophila populations. Annu Rev Genet 7:239–265

    Article  CAS  PubMed  Google Scholar 

  • Peterson PA (1985) Virus-induced mutations in maize: on the nature of stress-induction of unstable loci. Genet Res Camb 46:207–217

    Google Scholar 

  • Plus N (1954) Etude de la multiplication du virus de la sensibilité au gaz carbonique chez la drosophile. Bull Soc Biol Fr Belg 88:1–46

    Google Scholar 

  • Ribaudo RM, Di Lemma G, Di Pasquale A (1992) Somatically unstable transposable elements in a strain ofDrosophila melanogaster. Drosophila Inform Serv 71:201–202

    Google Scholar 

  • Richard-Molard C (1975) Isolement de lignees cellulaires deDrosophila melanogaster de diffe!rents génotypes et étude de la multiplication de deux variants du rhabdovirus sigma dans ces lignées. Arch Virol 47:139–146

    Article  CAS  PubMed  Google Scholar 

  • Robinson HL, Ramamoorthy L, Collart K, Brown DW (1993) Tissue tropism of avian leukosis viruses: analyses for viral DNA and proteins. Virology 193:443–445

    Article  CAS  PubMed  Google Scholar 

  • Rolfe M, Spanos A, Banks G (1986) Induction of yeast Ty element transcription by ultraviolet light. Nature 319:339–340

    Article  CAS  Google Scholar 

  • Rubin GM, Spradling AC (1982) Genetic transformation ofDrosophila with transposable element vectors. Science 218:348–353

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, second edition. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sapunov VB (1981) The effect of juvenile hormone analogs on mutation frequency inDrosophila melanogaster. Drosophila Inform Serv 56:116

    Google Scholar 

  • Spradling AC, Rubin GM (1982) Transposition of cloned P elements intoDrosophila germ line chromosomes. Science 218:341–347

    CAS  PubMed  Google Scholar 

  • Sprague GF, McKinney HH (1966) Aberrant ratio: an anomaly associated with virus infection. Genetics 31:1287–1296

    Google Scholar 

  • Strand DJ, McDonald JF (1985) Copia is transcriptionally responsive to environmental stress. Nucleic Acids Res 13:4401–4410

    CAS  PubMed  Google Scholar 

  • Varmus H, Brown P (1989) Retroviruses. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 53–108

    Google Scholar 

  • Walbot V (1988) Reactivation of the mutator transposable element system following gamma irradiation of seed. Mot Gen Genet 212: 259–264

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: I. Jouan-Dufournel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jouan-Dufournel, I., Cosset, FL., Contamine, D. et al. Transposable elements behavior following viral genomic stress inDrosophila melanogaster inbred line. J Mol Evol 43, 19–27 (1996). https://doi.org/10.1007/BF02352295

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02352295

Key words

Navigation