Skip to main content
Log in

In vitro measurements of optical properties of porcine brain using a novel compact device

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Knowledge of the optical properties of tissues can be applied in numerous medical and scientific fields, including cancer diagnostics and therapy. There are many different ways of determining the optical properties of turbid media. The paper describes measurements of the optical properties of porcine brain tissue using novel instrumentation for simultaneous absorption and scattering characterisation of small turbid samples. Integrating sphere measurements are widely used as a reference method for determination of the optical properties of relatively thin turbid samples. However, this technique is associated with bulky equipment, complicated measuring techniques, interference compensation techniques and inconvenient sample handling. It is believed that the sphere for some applications can be replaced by a new, compact device, called the combined angular and spatially resolved head sensor, to measure the optical properties of thin turbid samples. The results compare very well with data obtained with an integrating sphere for well-defined samples. The instrument was shown to be accurate to within 12% for μa and 1% for μ s in measurements of intralipid-ink samples. The corresponding variations of data were 17% and 2%, respectively. The reduced scattering coefficient for porcine white matter was measured to be 100 cm−1 at 633 nm, and the value for coagulated brain tissue was 65 cm−1. The corresponding absorption coefficients were 2 and 3 cm−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amelink, A., andSterenborg, H. J. (2004): ‘Measurement of the local optical properties of turbid media by differential path-length spectroscopy’,Appl. Opt.,43, pp. 3048–3054

    Article  Google Scholar 

  • Amelink, A., Sterenborg, H. J., Bard, M. P., andBurgers, S. A. (2004): ‘In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy’,Opt Lett.,29, pp. 1087–1089

    Article  Google Scholar 

  • Antonsson, J., Eriksson, O., andWårdell, K. (2005): ‘In-vivo reflection spectroscopy measurements in pig brain during stereotactic surgery’,SPIE, pp. 242–250

  • Beek, J. F., Blokland, P., Posthumus, P., Aalders, M., Pickering, J. W., Sterenborg, H. J. C. M., andvan Gemert, M. J. C. (1997): ‘In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm’,Phys. Med. Biol.,42, pp. 2255–2261

    Google Scholar 

  • Bigio, I. J., andBown, S. G. (2004): ‘Spectroscopic sensing of cancer and cancer therapy: current status of translational research’,Cancer Biol Ther.,3, pp. 259–267

    Google Scholar 

  • Boas, D. A., Gaudette, T., Strangman, G., Cheng, X. F., Marota, J. J. A., andMandeville, J. B. (2001): ‘The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics’,Neuroimage,13, pp. 76–90

    Article  Google Scholar 

  • Cheong, W.-F., Prahl, S. A., andWelch, A. J. (1990): ‘A review of the optical properties of biological tissues’,IEEE J. Quant. Electr.,26, pp. 2166–2185

    Google Scholar 

  • Cheong, W.-F. (1995): ‘Summary of optical properties’, inWelch, A. J., andvan Gemert, M. J. C. (Eds): ‘optical-thermal response of laser-irradiated tissue’, (Plenum Press, New York, 1995), pp. 275–303

    Google Scholar 

  • Cubeddu, R., Pifferi, A., Taroni, P., Torricelli, A., andValentini, G. (1996): ‘Experimental test of theoretical models for time-resolved reflectance’,Med. Phys.,23, pp. 1625–1633

    Article  Google Scholar 

  • Dam, J. S., Dalgaard, T., Fabricius, P. E., andAndersson-Engels, S. (2000): ‘Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements’,Appl. Opt.,39, pp. 1202–1209

    Google Scholar 

  • Dam, J. S., Yavari, N., andAndersson-Engels, S. (2005): ‘Realtime absorption and scattering characterization of slab-shaped turbid samples using a combination of angular and spatially resolved measurements’,Appl. Opt.,44, pp. 4281–4290

    Article  Google Scholar 

  • Driver, I., Lowdell, C. P., andAsh, D. V. (1991): ‘In vivo measurement of the optical interaction coefficients of human tumours at 630 nm’,Phys. Med. Biol.,36, pp. 805–813

    Article  Google Scholar 

  • Fantini, S., Franceschini-Fantini, M. A., Maier, J. S., Walker, S. A., Barbieri, B., andGratton, E. (1995): ‘Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry’,Opt. Eng.,34, pp. 32–42

    Article  Google Scholar 

  • Flock, S. T., Wilson, B. C., andPatterson, M. S. (1987): ‘Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm’,Med. Phys.,14, pp. 835–841

    Google Scholar 

  • Franceschini, M. A., Thompson, J., Culver, J. P., Strangman, G., andBoas, D. A. (2002): ‘Looking for the fast signal: Neuronal and hemodynamic evoked responses of the sensory-motor cortex’. OSA Biomedical Topical Meetings, OSA Technical Digest,OSA, pp. 208–210

  • Friesen, S. A., Hjortland, G. O., Madsen, S. J., Hirschberg, H., Engebraten, O., Nesland, J. M., andPeng, Q. (2002): ‘5-Aminolevulinic acid-based photodynamic detection and therapy of brain tumors (review)’,Int. J. Oncol.,21, pp. 577–582

    Google Scholar 

  • Jacques, S. L. (1996a): ‘Origins of tissue optical properties in the UVA, visible, and NIR regions’,Proc. OSA,2, pp. 364–369

    Google Scholar 

  • Jacques, S. L. (1996b): ‘Reflectance spectroscopy with optical fiber devices, and transcutaneous bilirubinometers’, inVerga Scheggi, A. M. et al. (Eds): ‘Biomedical optical instrumentation and laser-assisted biotechnology, vol. 325’ (Kluwer Academic Publishers, Dordrecht, 1996), pp. 83–94

    Google Scholar 

  • Johnson, K. S., Chicken, D. W., Pickard, D. C., Lee, A. C., Briggs, G., Falzon, M., Bigio, I. J., Keshtgar, M. R., andBown, S. G. (2004): ‘Elastic scattering spectroscopy for intraoperative determination of sentinel lymph node status in the breast’,J Biomed Opt.,9, pp. 1122–1128

    Article  Google Scholar 

  • Madsen, S. J., Wilson, B. C., Patterson, M. S., Park, Y. D., Jacques, S. L., andHefetz, Y. (1992): ‘Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measure’,Appl. Opt.,31, pp. 3509–3517

    Google Scholar 

  • Moriyama, E. H., Bisland, S. K., Lilge, L., andWilson, B. C. (2004): ‘Biotuminescence imaging of the response of rat gliosarcoma to ALA-PpIX-mediated photodynamic therapy’,Photochem. Photobiol.,80, pp. 242–249

    Article  Google Scholar 

  • Mourant, J. R., Freyer, J. P., Hielscher, A. H., Eick, A. A., Shen, D., andJohnson, T. M. (1998): ‘Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnotics’,Appl. Opt.,37, pp. 3586–3593

    Google Scholar 

  • Mourant, J. R., Johnson, T. M., Los, G., andBigio, I. J. (1999): ‘Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements’,Phys. Med. Biol.,44, pp. 1397–1417

    Article  Google Scholar 

  • Nilsson, A. M. K., Sturesson, C., Liu, D. L., andAndersson-Engels, S. (1998): ‘Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy’,Appl. Opt.,37, pp. 1256–1267

    Google Scholar 

  • Pickering, J. W., Moes, C. J. M., Sterenborg, H. J. C. M., Prahl, S. A., andvan Gemert, M. J. C. (1992): ‘Two integrating sphere with an intervening scattering sample’,J. Opt. Soc. Am.,9, pp. 621–631

    Google Scholar 

  • Schmidt, M. H., Meyer, G. A., Reichert, K. W., Cheng, J., Krouwer, H. G., Ozker, K., andWhelan, H. T. (2004): ‘Evaluation of photodynamic therapy near functional brain tissue in patients with recurrent brain tumors’,J. Neurooncol,67, pp. 201–207

    Article  Google Scholar 

  • Schroeter, M. L., Bucheler, M. M., Muller, K., Uludag, K., Obrig, H., Lohmann, G., Tittgemeyer, M., Villringer, A., andvon Cramon, D. Y. (2004): ‘Towards a standard analysis for functional near-infrared imaging’,Neuroimage,21, pp. 283–290

    Article  Google Scholar 

  • Stylli, S. S., Howes, M., MacGregor, L., Rajendra, P., andKaye, A. H. (2004): ‘Photodynamic therapy of brain tumours: evaluation of porphyrin uptake versus clinical outcome’,J Clin. Neurosci.,11, pp. 584–596

    Google Scholar 

  • Swartling, J., Dam, J. S., andAndersson-Engels, S. (2003a): ‘Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties’,Appl. Opt.,42, pp. 4612–4620

    Google Scholar 

  • Swartling, J., Pålsson, S., Platonov, P., Olsson, S. B., andAndersson-Engels, S. (2003b): ‘Changes in tissue optical properties due to radio frequency ablation of myocardium’,Med. Biol. Eng. Comput.,41, pp. 403–409

    Article  Google Scholar 

  • van Staveren, H. J., Moes, C. J. M., van Marle, J., Prahl, S. A., andvan Gemert, M. J. C. (1991): ‘Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm’,Appl. Opt.,30, pp. 4507–4514

    Google Scholar 

  • Wang, L., andJacques, S. L. (1992): Monte Carlo modeling of light transport in multi-layered tissues in standard C: Laser Biology Research Laboratory, M. D. Anderson Cancer Center, University of Texas, Houston, Texas

  • Wårdell, K., Antonsson, J., andEriksson, O. (2004): ‘Optical measurements during experimental stereotactic neurosurgery’. International Federation for Medical & Biological Engineering (IFMBE), Ischia, Naples, Italy

    Google Scholar 

  • Welch, A. J., andvan Gemert, M. J. C. (1995): ‘Optical-thermal response of laser-irradiated tissue’ (Plenum Press, New York, 1995)

    Google Scholar 

  • Wilson, B. C., Jeeves, W. P., andLowe, D. M. (1985): ‘In vivo andpost mortem measurements of the attenuation spectra of light in mammalian tissues’,Photochem. Photobiol.,42, pp. 153–162

    Google Scholar 

  • Wolf, M., Wolf, U., Choi, J. H., Toronov, V., Paunescu, L. A., Michalos, A., andGratton, E. (2003): ‘Fast cerebral functional signal in the 100-ms range detected in the visual cortex by frequency-domain near-infrared spectrophotometry’,Psychophysiology,40, pp. 521–528

    Article  Google Scholar 

  • Yaroslavsky, A. N., Schulze, P. C., Yaroslavsky, I. V., Schober, R., Ulrich, F., andSchwarzmaier, H. J. (2002): ‘Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range’,Phys. Med. Biol.,47, pp. 2059–2073

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yavari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yavari, N., Dam, J.S., Antonsson, J. et al. In vitro measurements of optical properties of porcine brain using a novel compact device. Med. Biol. Eng. Comput. 43, 658–666 (2005). https://doi.org/10.1007/BF02351040

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02351040

Keywords

Navigation