Skip to main content
Log in

Determination of226Ra in environmental samples using high-resolution inductively coupled plasma mass spectrometry

  • End of the Proceedings
  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A time-saving and accurate technique for determining226Ra in groundwater and soil was examined, using high-resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS). The technique was applied to the determination of226Ra in groundwater and soil samples and compared with the conventional liquid scintillation counting method. This technique was capable of completing226Ra counting within 3 minutes, without the in-growth period to allow radon and its progeny to achieve secular equilibrium with the parent226Ra. The detection limits of HR-ICP-MS for226Ra in groundwater and soil were 0.19 mBq·1−1 and 0.75 Bq·kg−1, respectively, which were about 10 times lower than that of the liquid scintillation counter. The results obtained from HR-ICP-MS in groundwater and soil were in accordance with those of LSC within a relative error of about 13%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Higuchi, M. Uesugi, K. Satoh, N. Ohashi, Anal. Chem., 56 (1984) 761.

    CAS  Google Scholar 

  2. H. Jiang, R. B. Holtzman, Health Phys., 57 (1989) 167.

    CAS  Google Scholar 

  3. J. Michel, W. S. Moore, P. T. King, Anal. Chem., 53 (1981) 1885.

    Article  CAS  Google Scholar 

  4. M. T. Crespo, A. S. Jimenez, J. Radioanal. Nucl. Chem., 221 (1997) 149.

    Article  CAS  Google Scholar 

  5. B. D. Stewart, J. W. Mcklveen, R. L. Glinski, J. Radional. Nucl. Chem., 123 (1988) 121.

    CAS  Google Scholar 

  6. Y. Ishikawa, H. Murakami, T. Sekine, T. Saito, K. Yoshihara, J. Radional. Nucl. Chem., 178 (1994) 301.

    CAS  Google Scholar 

  7. H. F. Lucas, F. Markun, J. Environ. Radioact., 15 (1992) 1.

    Article  CAS  Google Scholar 

  8. K. Shiraish, Y. Igarashi, M. Yamamoto, T. Nakajima, I. P. Los, A. V. Zelensky, M. Z. Buzinny, J. Radioanal. Nucl. Chem., 185 (1994) 157.

    Google Scholar 

  9. C. K. Kim, R. Seki, S. Morita, S. Yamasaki, A. Tsumura, Y. Takaku, Y. Igarashi, M. Yamamoto, J. Anal. At. Spectrom., 6 (1991) 205.

    Article  CAS  Google Scholar 

  10. J. M. Barrero Moreno, M. Betti, J. I. Garcia Alonso, J. Anal. At. Spectrom., 12 (1997) 355.

    CAS  Google Scholar 

  11. Y. Igarashi, K. Shiraishi, Y. Takaku, K. Masuda, R. Seki, M. Yamamoto, Anal. Sci., 8 (1992) 475.

    CAS  Google Scholar 

  12. D. H. Keefer, E. J. Fenyves, in: Natural Radiation Environment III, Vol. 1, CONF-780422,T. F. Gesell, W. M. Lowder (Eds), Technical Information Center, United States Department of Energy, Oak Ridge, TN, 1980, p. 839.

    Google Scholar 

  13. J. B. Hursh, The Radium Content of Public Water Supplies, University of Rochester Report, Roehester, New York, 1953.

    Google Scholar 

  14. A. B. Tanner, in: Natural Radiation Environment,J. A. S. Adams, W. M. Lowder (Eds), University of Chicago Press, Chicago, IL, 1964, p. 253.

    Google Scholar 

  15. J. Michel, W. S. Moore, Health Phys., 38 (1980) 663.

    CAS  Google Scholar 

  16. R. B. Holtzman, in: Natural Radiation Environment,J. A. S. Adams, W. M. Lowder (Eds), University of Chicago Press, Chicago, IL, 1964, p. 227.

    Google Scholar 

  17. M. Asikainen, Natural Radioactivity of Ground Water and Drinking Water in Finland, Institute of Radiation Protection Report, STL-A39, Helsinki, 1982, p. 1.

  18. A. P. Vinogradov, The Geochemistry of Rare and Dispersed Chemical Elements in Soils, 2nd ed, Consultants Bureau, New York, 1959.

    Google Scholar 

  19. B. S. Prister, Rept. AEC-tr-7128 (Atomizdat-160), United States Atomic Energy Commission, Washington, DC, 1967.

    Google Scholar 

  20. U. C. Mishra, S. Sadashivan, J. Sci. Ind. Res., 30 (1971) 59.

    CAS  Google Scholar 

  21. R. Kijaic, W. Milosevic, E. Horsic, A. Bauman, in: Natural Radiation Environment,K. G. Vohra, U. C. Mishra, K. C. Pillai, S. Sadashivan (Eds), Wiley Eastern Ltd, New Delhi, 1982, p. 244.

    Google Scholar 

  22. V. V. Kovalsky, T. E. Vorotnitskaya, Ukr. Biokhim. Zh., 4 (1966) 419.

    Google Scholar 

  23. E. Penna Franca, Health Phys., 11 (1965) 699.

    Google Scholar 

  24. B. Khademi, A. A. Alemi, A. Nasseri, in: Natural Radiation Environment, Vol. 1,T. F. Gesell, W. M. Lowder (Eds), CONF-780422, Technical information Center, United States Department of Energy, Oak Ridge, TN, 1980, p. 600.

    Google Scholar 

  25. E. Marsden, in: Natural Radiation Environment,J. A. S. Adams, W. M. Lowder (Eds), University of Chicago Press, Chicago, IL, 1964, p. 807.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YJ., Kim, CK., Kim, CS. et al. Determination of226Ra in environmental samples using high-resolution inductively coupled plasma mass spectrometry. J Radioanal Nucl Chem 240, 613–618 (1999). https://doi.org/10.1007/BF02349421

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02349421

Keywords

Navigation