Skip to main content
Log in

Analysis of cardiac left-ventricular volume based on time warping averaging

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The cardiac left-ventricular (LV) volume signal, obtained by acoustic quantification, is affected by noise and respiratory modulation, resulting in a large beat-to-beat variability that affects the computation of LV function indices. A new method is proposed to improve the evaluation of LV indices by applying a signal averaging technique based on dynamic time warping to consecutive LV volume waveforms. Volume signals obtained from ten normal young (NY) subjects (mean age±SD: 25±5 years) were used to evaluate the performance of this algorithm. To evaluate its clinical utility, the effects of ageing and pharmacologically induced changes on LV function were assessed by studying, respectively, ten normal (N) adult subjects (age 64±8 years) and ten patients with dilated cardiomyopathy during a control and low-dose dobutamine (10 μg kg−1 min−1) study. Indices of LV function were highly consistent, with a variability of less than 8%, even when only 16 beats were averaged, independently of their selection inside the whole recording. When compared with beat-to-beat measures, the averaging of 16 beats significantly reduced (by more than 50%) the interbeat variability of all indexes. Expected alterations in both diastolic and systolic function were evidenced both with ageing (peak filling atrial contraction and ejection rates: from 275±77 ml s−1, 76±30 ml s−1, 230±70 ml s−1, respectively, in NY, to 160±33 ml s−1, 125±39 ml s−1, 163±54 ml s−1 in N) and with dobutamine (peak filling and ejection rates from 160±72 ml s−1 and 183±86 ml s−1 respectively, in control, to 253±75 ml s−1 and 251±105 ml s−1 with dobutamine). Signal averaging with time warping allows fast and improved assessment of LV function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Berger, A. C., andCohen, R. J. (1981): ‘Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control’,Science,213, pp. 220–222

    Article  Google Scholar 

  • Akselrod, S., Amitayt, Y., Lang, R. M., Mor-Avi, V., andKeselbrener, L. (2000). ‘Spectral analysis of left ventricular area variability as a tool to improve the understanding of cardiac autonomic control’,Physiol. Meas.,21, pp. 319–331

    Article  Google Scholar 

  • Andersen, K., andVik-Mo, H. (1984): ‘Effects of spontaneous respiration on left ventricular function assessed by echocardiography’,Circulation,69, pp. 874–879

    Google Scholar 

  • Arora, R. R., Machac, J., Goldman, M. E., Butler, R. N., Gorlin, R., andHorowitz, S. F. (1987): ‘Atrial kinetics and left ventricular diastolic filling in the healthy elderly’,J. Am. Coll. Cardiol.,9, pp. 1255–1260

    Google Scholar 

  • Aunon, J. I., McGillem, C. D., andChilders, D. G. (1981): ‘Signal processing in evoked potential research: averaging and modeling’,CRC Crit. Rev. Bioeng.,5, pp. 323–367

    Google Scholar 

  • Baselli, G., Porta, A., andOneda, F. (1992): ‘Time warping of the cardiac cycle in the ECG signal: evaluation of beat to beat changes’. Proceedings of MEDINFO 92, Geneve

  • Bednarz, J. E., Marcus, R. H., andLang, R. M. (1995): Technical guidelines for performing automated border detection studies’,J. Am. Soc. Echocardiogr.,8, pp. 293–305.

    Article  Google Scholar 

  • Bellman, R., andDreyfus, S. (1962): ‘Applied dynamic programming’ (Princeton University Press, New Jersey, USA, 1962)

    MATH  Google Scholar 

  • Caiani, E. G., Porta, A., Baselli, G., Turiel, M., Muzzupappa, S., Pieruzzi, F., Crema, C., Malliani, A., andCerutti, S. (1998): ‘Warped-average template technique to track on a cycle-by-cycle basis the cardiac filling phases on left ventricular volume’. Proceedings of 25th Annual International Conference of IEEE Computers in Cardiology, Cleveland, OH, USA, pp. 73–76

  • Caiani, E. G., Turiel, M., Muzzupappa, S., Porta, A., Baselli, G., Pagani, M., Cerutti, S., andMalliani, A. (2000): ‘Evaluation of respiratory influences on left ventricular function parameters extracted from echocardiographic acoustic quantification’,Physiol. Meas.,21, pp. 175–186

    Article  Google Scholar 

  • Cohen, A. (1986): ‘Biomedical signal processing, vol. 1–2’ (CRC Press, Boca Raton, USA, 1986)

    Google Scholar 

  • Gottlieb, S., Keren, A., Khoury, Z., andStern, S. (1995): ‘Findings of automatic border detection in subjects with left ventricular diastolic dysfunction by Doppler echocardiography’,J. Am. Soc. Echocardiogr.,8, pp. 149–161

    Article  Google Scholar 

  • Gupta, L., Molfese, D. L., Tammana, R., andSimos, P. G. (1996): ‘Nonlinear alignment and averaging for estimating the evoked potential’,IEEE Trans. Biomed. Eng.,43, pp. 348–356

    Article  Google Scholar 

  • Marcus, R. H., Bednarz, J., Coulden, R., Shroff, S., Lipton, M., andLang, R. M. (1993): ‘Ultrasonic backscatter system for automated on-line endocardial boundary detection: evaluation by ultrafast computed tomography’,J. Am. Coll. Cardiol.,22, pp. 839–847

    Google Scholar 

  • Merino, A., Alegria, E., Castello, R., andMartinez-Caro, D. (1988). ‘Influence of age on left ventricular contractility’,Am. J. Cardiol.,62, pp. 1103–1108

    Article  Google Scholar 

  • Miyatake, K., Okamoto, M., Kinoshita, N., Owa, M., Nakasone, I., Sakakibara, H., andNimura, Y. (1984): ‘Augmentation of atrial contribution to left ventricular inflow with aging as assessed by intracardiac Doppler flowmetry,Am. J. Cardiol.,53, pp. 586–589

    Article  Google Scholar 

  • Mor-Avi, V., Gillesberg, I. E., Korcarz, C., Sandelski, J., andLang, R. M. (1995): ‘Improved quantification of left ventricular function by applying signal averaging to echocardiographic acoustic quantification’,J. Am. Soc. Echocardiogr.,8, pp. 679–689

    Article  Google Scholar 

  • Mor-Avi, V., Vignon, P., Bales, A. C., Spencer, K. T., andLang, R. M. (1998): ‘Acoustic quantification indexes of left ventricular size and function: effects of signal averaging’,J. Am. Soc. Echocardiogr.,11, pp. 792–802

    Article  Google Scholar 

  • Olsen, C. O., Tyson, G. S., Maier, G. W., Davis, J. W., andRankin, J. S. (1985): ‘Diminished stroke volume during inspiration: a reverse thoracic pump’,Circulation,72, pp. 668–679

    Google Scholar 

  • Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., Sandrone, G., Malfatto, G., Dell'Orto, S., Piccaluga, E., Turiel, M., andMalliani, A. (1986): ‘Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog’,Circ. Res.,59, pp. 178–193

    Google Scholar 

  • Perez, J. E., Klein, S. C., Prater, D. M., Fraser, C. E., Cardona, H., Waggoner, A. D., Holland, M. R., Miller, J. G., andSobel, B. E. (1992a): ‘Automated, on-line quantification of left ventricular dimensions and function by echocardiography with backscatter imaging and lateral gain compensation’,Am. J. Cardiol.,70, pp. 1200–1205

    Article  Google Scholar 

  • Perez, J. E., Waggoner, A. D., Barzilai, B., Melton, H.E., Jr., Miller, J. G., andSobel, B. E. (1992b): ‘On-line assessment of ventricular function by automatic boundary detection and ultrasonic backscatter imaging’,J. Am. Coll. Cardiol.,19, pp. 313–320

    Article  Google Scholar 

  • Picton, T., Hunt, M., Mowrey, R., Rodriguez, R., andMaru, J. (1988): ‘Evaluation of brain-stem auditory evoked potentials using dynamic time warping’,Electroencephalogr. Clin. Neurophysiol.,71, pp. 212–225

    Article  Google Scholar 

  • Porta, A., Baselli, G., Turiel, M., Crema, C., Dalla Vecchia, L., Lucini, D., Caiani, E. G., Malliani, A., Pagani, M., andCerutti, S. (1997): ‘Evaluation of respiratory influences on left ventricular function by means of echocardiographic approach’. Proceedings of 24th Annual International Conference of IEEE Computers in Cardiology, p. 403–406

  • Roberts, K., Lawrence, P., Eisen, A., andHoirch, M. (1987): ‘Enhancement and dynamic time warping of somatosensory evoked potential components applied to patients with multiple sclerosis’,IEEE Trans. Biomed. Eng.,34, pp. 397–405

    Google Scholar 

  • Sakoe, H., andChiba, S. (1973): ‘Comparative study of DP-pattern matching techniques for speech recognition’. Tech. Group Meeting Speech. Acoust. Soc. Japan, p. S73–22

  • Sakoe, H., andChiba, S. (1978): ‘Dynamic programming algorithm optimisation for spoken word recognition’,IEEE Trans. Acoust. Speech Signal Process.,26, pp. 43–49

    Article  MATH  Google Scholar 

  • Seliem, M. A., McWilliams, E. T., andPalileo, M. (1996): ‘Beat-to-beat variability of left ventricular indexes measured by acoustic quantification: influence of heart rate and respiration-correlation with M-mode echocardiography’,J. Am. Soc. Echocardiogr.,9, pp. 221–230

    Article  Google Scholar 

  • Spencer, K. T., Mor-Avi, V., Weinert, L., Steenhuisen, J., Vignon, P. andLang, R. M. (1998): ‘Age dependency of left atrial and left ventricular acoustic quantification waveforms for the evaluation of diastolic performance in left ventricular hypertrophy’,J. Am. Soc. Echocardiogr.,11, pp. 1027–1035

    Article  Google Scholar 

  • Stewart, W. J., Rodkey, S. M., Gunawardena, S., White, R. D., Luvisi, B., Klein, A. L., andSalcedo, E. (1993): ‘Left ventricular volume calculation with integrated backscatter from echocardiography’,J. Am. Soc. Echocardiogr.,6, pp. 553–563

    Google Scholar 

  • Stoddard, M. F., Keedy, D. L., andLongaker, R. A. (1994): ‘Two-dimensional transesophageal echocardiographic characterization of ventricular filling in real time by acoustic quantification: comparison with pulsed Doppler echocardiography’,J. Am. Soc. Echocardiogr.,7, pp. 116–131

    Google Scholar 

  • Strick, H., andBoves, L. (1991): ‘A dynamic programming algorithm for time-aligning and averaging physiological signals related to speech’,J. Phonetics,19, pp. 367–378

    Google Scholar 

  • Vitarelli, A., Penco, M., Ferro-Luzzi, M., Rosanio, S., Dagianti, A., Fedele, F., andDagianti, A. (1996): ‘Assessment of diastolic left ventricular filling by echocardiographic automated border detection and comparison with radionuclide ventriculography’,J. Am. Soc. Echocardiogr.,9, pp. 135–146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Caiani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caiani, E.G., Porta, A., Baselli, G. et al. Analysis of cardiac left-ventricular volume based on time warping averaging. Med Bio Eng Comput 40, 225–233 (2002). https://doi.org/10.1007/BF02348129

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02348129

Keywords

Navigation