Skip to main content
Log in

Microdistribution of sulfate-reducing bacteria in sediments of a hypertrophic lake and their response to the addition of organic matter

  • Published:
Ecological Research

Abstract

To clarify the ecological significance of the association of sulfate-reducing bacteria (SRB) with sediment particle size, SRB utilizing lactate (l-SRB), propionate (p-SRB) and acetate (a-SRB) were examined with different sizes of sediment particles in a hypertrophic freshwater lake using the anaerobic plate count method. The numbers ofl-SRB anda-SRB were 104–105 colony forming units (CFU) per ml in the 0–3 cm layer and 102–103 CFU ml−1 in the 10–13 cm layer while the numbers ofp-SRB were one or two orders lower than those ofl-SRB anda-SRB. A sediment suspension was fractionated into four fractions (<1, 1–10, 10–94 and >94 μm). The highest proportions ofl-SRB anda-SRB were found in the 10–94 μm fraction: 66–97% forl-SRB and 53–98% fora-SRB. The highest proportion ofp-SRB was found in the >94 μm fraction (70–74%). These results indicate that most SRB were associated with sediment particles. One isolate from an acetate-utilizing enrichment culture was similar toDesulfotomaculum acetoxidans, a spore-forming sulfate-reducing bacterium. When lactate and sulfate were added to sediment samples,l-SRB anda-SRB in the <10 μm-fraction grew more rapidly than those in whole sediment for the first 2 days. This result suggests that nutrients uptake by free-living and small particle-associated (<10 μm) SRB is higher than that by SRB associated with larger particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amann R. I., Binder B. B., Olson R. J., Chisholm S. W., Devereux R. &Stahl D. A. (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations.Applied and Environmental Microbiology 56: 1919–1925.

    CAS  PubMed  Google Scholar 

  • Amann R. I., Ludwig W. &Schleifer K. (1995) Phylogenetic identification andin situ detection of individual microbial cells without cultivation.Microbiological Reviews 59: 143–169.

    CAS  PubMed  Google Scholar 

  • Brock T. D., Madigan M. T., Martinko J. M. &Parker J. (1994)Biology of Microorganisms, 6th edn. Prentice-Hall, New Jersey.

    Google Scholar 

  • Butlin K. R., Adams M. E. &Thomas M. (1949) The isolation and cultivation of sulfate-reducing bacteria.Journal of General Microbiology 3: 46–59.

    CAS  Google Scholar 

  • Christensen D. &Blackburn T. H. (1982) Turnover of14C-labeled acetate in marine sediments.Marine Biology 71: 113–119.

    Article  Google Scholar 

  • Cypionka H., Widdel F. &Pfennig N. (1985) Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients.FEMS Microbiology and Ecology 31: 39–45.

    CAS  Google Scholar 

  • Devereux R., Kane M. D., Winfrey J. &Stahl D. A. (1992) Genus- and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria.Systematic and Applied Microbiology 15: 601–609.

    CAS  Google Scholar 

  • Elsgaard L. &Jørgensen B. B. (1992) Anoxic transformations of radiolabeled hydrogen sulfide in marine and freshwater sediments.Geochimica Cosmochimica Acta 56: 2425–2435.

    Article  CAS  Google Scholar 

  • Fukui M. &Fukuhara H. (1987) Colony formation on agar plates by sulfate-reducing bacteria in water and sediment of lake.Bulletin of Japanese Society of Microbial Ecology 1: 75–78.

    Google Scholar 

  • Fukui M., Suwa Y. &Urushigawa Y. (1996) High survival efficiency and the ribosomal RNA decaying pattern ofDesulfobacter latus, a high specific acetate-utilizing organism, during starvation.FEMS Microbiology and Ecology 19: 17–25.

    CAS  Google Scholar 

  • Fukui M. &Takii S. (1987) Distribution of lactate-, propionate-, and acetate-oxidizing sulfate-reducing bacteria in various aquatic sediments.Japanese Journal of Limnology 48: 249–256.

    CAS  Google Scholar 

  • Fukui M. &Takii S. (1989a) Reduction of tetrazolium salts by sulfate-reducing bacteria.FEMS Microbiology and Ecology 62: 13–20.

    CAS  Google Scholar 

  • Fukui M. &Takii S. (1989b) Kinetics of colony formation by sulfate-reducing bacteria.Bulletin of Japanese Society of Microbial Ecology 3: 67–71.

    Google Scholar 

  • Fukui M. &Takii S. (1990a) Colony formation of free-living and particle-associated sulfate-reducing bacteria.FEMS Microbiology and Ecology 73: 85–90.

    Google Scholar 

  • Fukui M. &Takii S. (1990b) Survival of sulfate-reducing bacteria in oxic surface sediment of a seawater lake.FEMS Microbiology and Ecology 73: 317–322.

    CAS  Google Scholar 

  • Fukui M. &Takii S. (1990c) Seasonal variations of population density and activity of sulfate-reducing bacteria in offshore and reed sediments of a hypertrophic freshwater lake.Japanese Journal of Limnology 53: 63–71.

    Google Scholar 

  • Fukui M. &Takii S. (1994) Kinetics of sulfate respiration by free-living and particle-associated sulfate-reducing bacteria.FEMS Microbiology and Ecology 13: 241–248.

    CAS  Google Scholar 

  • Furusaka C. (1968) Studies on the activity of a sulfate reducer in paddy soil.The Reports of the Institute of Agricultural Research, Tohoku University 19: 101–184.

    Google Scholar 

  • Furusaka C., Nagatsuka Y. & Ishikuri S. (1991) Survival of sulphate-reducing bacteria in oxic layer of paddy soil.Proceedings of the 8th International Symposium for Environmental Biogeochemistry, pp. 259–266.

  • Hattori T. &Furusaka C. (1958) Studies on the sulfate reducing activity of several paddy soils.Bulletin of Institute of Agricultural Research. Tohoku University 10: 55–62.

    Google Scholar 

  • Hahn D., Amann R. I., Ludwig W., Akkermans A. D. L. &Schleifer K-H. (1992) Detection of micro-organisms in soil afterin situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides.Journal of General Microbiology 138: 879–887.

    CAS  PubMed  Google Scholar 

  • Howarth R. W. &Merkel S. (1984) Pyrite formation and the measurement of sulfate reduction in salt marsh sediment.Limnology and Oceanography 29: 598–608.

    CAS  Google Scholar 

  • Jørgensen B. B. (1977) Bacterial sulfate reduction within reduced microniches of oxidized marine sediments.Marine Biology 41: 7–18.

    Google Scholar 

  • Kobayashi S. (1982) Transition of ecosystem in Lake Teganuma caused by water pollution.Water and Waste 24: 3–14 (in Japanese).

    Google Scholar 

  • Konda T. (1984) Seasonal variations in four bacterial size fractions from a hypertrophic pond in Tokyo, Japan.Internationale Revue der Gesamten Hydrobiologie 69: 843–858.

    Google Scholar 

  • Laanbroek H. &Peennig N. (1981) Oxidation of short chain fatty acids by sulfate-reducing bacteria in freshwater and in marine sediments.Archives of Microbiology 128: 330–335.

    Article  CAS  PubMed  Google Scholar 

  • Lawongsa P., Inubushi K. &Wada H. (1987) Determination of organic acids in soil by high performance liquid chromatography.Soil Science and Plant Nutrition 33: 299–302.

    CAS  Google Scholar 

  • Maeda H., &Kawai A. (1987) Determination of organic acids in the lake sediment.Nippon Suisan Gakkaishi 52: 1205–1208.

    Google Scholar 

  • Marnette E. C., Hordijk C., Breemen N. V. &Cappenberg T. (1992) Sulfate reduction and S-oxidation in a moorland pool sediment.Biogeochemistry 17: 123–143.

    Article  CAS  Google Scholar 

  • Munson D. A. (1977) Simplified method for the determination of acid-soluble sulfides in marine sediments.Marine Biology 40: 145–150.

    Article  CAS  Google Scholar 

  • Nedwell D. B. (1984) The input and mineralization of organic carbon in anaerobic aquatic sediments.Advances in Microbial Ecology 7: 93–131.

    CAS  Google Scholar 

  • Nedwell D. B. &Takii S. (1988) Bacterial sulphate reduction in sediment of European salt marsh: Acid-volatile and tin-reducible products.Estuarine, Coastal and Shelf Science 26: 599–606.

    Article  CAS  Google Scholar 

  • Parkes R.J., Gibson G.R., Mueller-Harvey I., Buckingham W. J. &Herbert R. J. (1989) Determination of the substrates for sulphate-reducing bacteria within marine and estuarine sediments with different rates of sulphate reduction.Journal of General Microbiology 135: 175–187.

    CAS  Google Scholar 

  • Pfennig N., Widdel F. &Trüper H. G. (1981) The dissimilatory sulfate-reducing bacteria. In:The Prokaryotes (eds M. P. Starr, H. Stolp, H. G. Trüper & H. G. Schlegel) pp. 926–940, Springer-Verlag, New York.

    Google Scholar 

  • Ramsing N., Kühl M. &Jørgensen B. B. (1993) Distribution of sulfate-reducing bacteria, O2, H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes.Applied and Environmental Microbiology 59: 3840–3849.

    CAS  PubMed  Google Scholar 

  • Rubentschik L., Roisin M. B. &Bieljansky F. M. (1936) Adsorption of bacteria in salt lakes.Journal of Bacteriology 32: 11–31.

    Google Scholar 

  • Sakurai Y. (1967) Some examination on the method for enumerating viable heterotrophic bacteria in water.Journal of Japan Biological Society for Water Waste 2: 21–27 (in Japanese).

    Google Scholar 

  • Sweerts J-P. B. R. A., Rudd J. W. M. &Kelly C. A. (1986) Metabolic activities in flocculant surface sediments and underlying sandy littoral sediments.Limnology and Oceanography 31: 330–338.

    CAS  Google Scholar 

  • Takeda K. &Fukui M. (1995) Conversion of lactate to methane by triculture of sulfate-reducer and methanogens.Bulletin of Japanese Society of Microbial Ecology 10: 1–7.

    Google Scholar 

  • Thamdrup B., Finster K., Hansen J. W. &Bak F. (1993) Bacterial disproportion of S0 coupled to chemical reduction of iron or manganese.Applied and Environmental Microbiology 59: 101–108.

    CAS  PubMed  Google Scholar 

  • Thompson L. A. &Nedwell D. B. (1985) Existence of different pools of fatty acids in anaerobic model ecosystems and their availability to microbial metabolism.FEMS Microbiology and Ecology 31: 141–146.

    CAS  Google Scholar 

  • Wakao N. &Furusaka C. (1972) A new agar method for the quantitative study of sulfate-reducing bacteria in soil.Soil Science and Plant Nutrition 18: 39–44.

    Google Scholar 

  • Wakao N. &Furusaka C. (1976) Presence of micro-aggregates containing sulfate-reducing bacteria in a paddy-field soil.Soil Biology and Biochemistry 8: 157–159.

    Article  Google Scholar 

  • Widdel F. (1988) Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In:Biology of Anaerobic Microorganisms (ed. A. J. B. Zehnder) pp. 469–585. John Wiley & Sons, New York.

    Google Scholar 

  • Widdel F. (1992) The GenusDesulfotomaculum. In:The Prokaryotes: A Handbook on The Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd edn (eds A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. D. Shleifer) pp. 1792–1799. Springer-Verlag, New York.

    Google Scholar 

  • Widdel F. &Bak F. (1992) Gram-negative mesotrophic sulfate-reducing bacteria. In:The Prokaryotes: A Handbook on The Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd edn (eds A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. D. Shleifer) pp. 3353–3378. Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Fukui, M., Takii, S. Microdistribution of sulfate-reducing bacteria in sediments of a hypertrophic lake and their response to the addition of organic matter. Ecol. Res. 11, 257–267 (1996). https://doi.org/10.1007/BF02347783

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02347783

Key words

Navigation